Background: Methods of objectively measuring rotational knee laxity are either experimental or difficult to use in daily practice. A new method has been developed to quantitatively assess rotatory laxity using an open MRI system and new tool, the KneeM device.
Purpose/hypothesis: To perform a preliminary evaluation of a novel knee rotation measurement device to assess knee kinematics during flexion in an MRI field, in both anterior cruciate ligament (ACL)-deficient and healthy contralateral knees. The hypothesis was that the KneeM device would allow in vivo reproduction and analysis of knee kinematics during flexion in healthy and ACL-deficient knees.
Study Design: Controlled laboratory study.
Methods: Ten subjects (7 men and 3 women; mean age ± standard deviation, 32.3 ± 9.4 years) with ACL-deficient knees and contralateral uninjured knees participated in the study. An open MRI was performed with the KneeM device at a mean 4.9 months (range, 3.0-7 months) after ACL injury. The device exerted on the knee an anterior drawer force of 100 N, with an internal rotation of 20°, through the range of flexion (0°, 20°, 40°, and 60°). Both ACL-deficient and healthy contralateral knees were analyzed using the Iwaki method.
Results: There was no statistical difference of anterior translation in the medial compartment between intact and ACL-deficient knees at all degrees of flexion. However, significant differences in the anterior translation of the lateral compartment were observed between ACL-deficient and intact contralateral knees at 0° and 20° of flexion (P = .005 and P = .002, respectively). Between 20° and 40°, the lateral plateau of ACL-deficient knees translated 7.7 mm posteriorly, whereas the medial compartment remained stable, reflecting a sudden external rotation of the lateral plateau under the femoral condyle.
Conclusion: This preliminary study suggests that measurement of tibiofemoral movements in both compartments during flexion using the KneeM device was useful for quantifying rotatory laxity in ACL-deficient knees. Moreover, this device seemed to allow a "mechanized pivot shift" and allowed reproduction of the "pivot" phase in the MRI field between 20° and 40° of flexion.
Clinical Relevance: This device could be used for diagnostic purposes or to investigate the outcomes of ACL reconstructions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555568 | PMC |
http://dx.doi.org/10.1177/2325967114525583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!