Proteomic analysis of Pteropus alecto kidney cells in response to the viral mimic, Poly I:C.

Proteome Sci

CSIRO, Australian Animal Health Laboratory, East Geelong, 3219 VIC Australia.

Published: November 2015

Background: Bats are recognised as an important reservoir for a number of highly pathogenic zoonotic viruses. While many of these viruses cause severe and often fatal disease in humans, bats are able to coexist with these viruses without clinical signs of disease. The mechanism conferring this antiviral response is not fully understood. Here, we investigated the differential protein expression of immortalised Pteropus alecto kidney cells (PaKiT03) following transfection with the viral mimic, Poly I:C. Two complementary proteomic approaches, difference gel electrophoresis (DIGE) and isobaric tagging for relative and absolute quantitation (iTRAQ) were used to quantify changes in protein expression following Poly I:C stimulation at 4, 8 and 20 hr post treatment (hpt).

Results: The expression of ISG54 gene, a known responder to virus infection and Poly I:C treatment, was significantly induced in transfected cells compared with mock-transfected cells. Through iTRAQ analysis we show that Poly I:C up-regulates key glycolytic enzymes at 4 hpt within PaKiT03 cells. In contrast, at 20 hpt PaKiT03 cells down-regulated ribosomal subunit proteins. The analysis with DIGE of Poly I:C transfected PaKiT03 cells showed over 215 individual spots differentially regulated, however only 25 spots could be unambiguously identified by LC-MS/MS. Immunoblotting confirmed the up-regulation of Eno1 and Tpi1 in PaKiT03 cells following Poly I:C transfection. A comparison with human cells (HEK293T and HeLa) and one additional bat cell line (PaLuT02), demonstrated that glycolytic pathways are also induced in these cell types, but at different intensities.

Conclusion: The two techniques, DIGE and iTRAQ identified largely overlapping sets of differentially expressed proteins, however DIGE unambiguously identified significantly less proteins than iTRAQ. Poly I:C induced a rapid metabolic shift towards glycolysis within the PaKiT03 cells at 4 hpt, presumably as a consequence of increased energy requirements. On the other hand ribosomal subunit proteins were seen as down-regulated by iTRAQ, these proteins may be the limiting factors in the translational machinery available for virus replication. This study provides new insight into the antiviral response of bat cells, highlighting the importance of energy metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4630911PMC
http://dx.doi.org/10.1186/s12953-015-0081-6DOI Listing

Publication Analysis

Top Keywords

pakit03 cells
20
cells
11
pteropus alecto
8
alecto kidney
8
kidney cells
8
viral mimic
8
poly
8
mimic poly
8
antiviral response
8
protein expression
8

Similar Publications

Background: Nelson Bay orthoreovirus (NBV) is a fusogenic bat borne virus with an unknown zoonotic potential. Previous studies have shown that NBV can infect and replicate in a wide variety of cell types derived from their natural host (bat), as well as from human, mouse and monkey. Within permissive cells, NBV induced significant cytopathic effects characterised by cell-cell fusion and syncytia formation.

View Article and Find Full Text PDF

Bats are important reservoirs of many viruses, which are capable of infecting the host without inducing obvious clinical diseases. Interferon and the downstream interferon regulated genes (IRGs) are known to act as the first line of defense against viral infections. Little is known about the transcriptional profile of genes being induced by interferon in bats and their role in controlling virus infection.

View Article and Find Full Text PDF

Proteomic analysis of Pteropus alecto kidney cells in response to the viral mimic, Poly I:C.

Proteome Sci

November 2015

CSIRO, Australian Animal Health Laboratory, East Geelong, 3219 VIC Australia.

Background: Bats are recognised as an important reservoir for a number of highly pathogenic zoonotic viruses. While many of these viruses cause severe and often fatal disease in humans, bats are able to coexist with these viruses without clinical signs of disease. The mechanism conferring this antiviral response is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!