A plethora of studies have demonstrated that chronic inflammatory microenvironment influences the genesis and progression of tumors. Such microenvironments are enriched with various lipid mediators. Platelet activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is one such lipid mediator that is secreted by different immune cell types during inflammation and by breast cancer cells upon stimulation with growth factors. Overexpression of PAF-receptor has also been observed in many other cancers. Here we report the possible roles of PAF in tumor initiation and progression. MCF10A, a non-transformed and non-malignant mammary epithelial cell line, when grown as 3D 'on-top' cultures form spheroids that have a distinct hollow lumen surrounded by a monolayer of epithelial cells. Exposure of these spheroids to PAF resulted in the formation of large deformed acinar structures with disrupted lumen, implying transformation. We then examined the response of transformed cells such as MDA-MB 231 to stimulation with PAF. We observed collective cell migration as well as motility at the single cell level on PAF induction, suggesting its role during metastasis. This increase in collective cell migration is mediated via PI3-kinase and/or JNK pathway and is independent of the MAP-kinase pathway. Taken together this study signifies a novel role of PAF in inducing transformation of non-tumorigenic cells and the vital role in promotion of breast cancer cell migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2015.4387 | DOI Listing |
Neuro Oncol
January 2025
Department of Breast Oncology, Moffitt Cancer Center.
Background: Screening of asymptomatic stage IV breast cancer with brain MRIs is currently not recommended by National Comprehensive Cancer Network (NCCN) Guidelines. The incidence of asymptomatic brain metastasis is not well documented.
Methods: The study is designed as a single arm, phase II trial, with the goal of investigating surveillance brain MRIs in neurologically asymptomatic patients with metastatic breast cancer.
Front Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Preventive Medicine, Shantou University Medical College, Shantou, China.
Background: Colon adenocarcinoma (COAD) is a malignancy with a high mortality rate and complex biological characteristics and heterogeneity, which poses challenges for clinical treatment. Anoikis is a type of programmed cell death that occurs when cells lose their attachment to the extracellular matrix (ECM), and it plays a crucial role in tumor metastasis. However, the specific biological link between anoikis and COAD, as well as its mechanisms in tumor progression, remains unclear, making it a potential new direction for therapeutic strategy research.
View Article and Find Full Text PDFFront Oncol
January 2025
Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
Introduction: Oncolytic herpes simplex viruses (oHSVs) are a type of biotherapeutic utilized in cancer therapy due to their ability to selectively infect and destroy tumor cells without harming healthy cells. We sought to investigate the functional genomic response and altered metabolic pathways of human cancer cells to oHSV-1 infection and to elucidate the influence of these responses on the relationship between the virus and the cancer cells.
Methods: Two datasets containing gene expression profiles of tumor cells infected with oHSV-1 (G207) and non-infected cells from the Gene Expression Omnibus (GEO) database were processed and normalized using the R software.
Front Oncol
January 2025
Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland.
Background: Breast cancer remains a leading cause of mortality among women, driven by the molecular complexity of its various subtypes. This study aimed to investigate the differential expression of genes and miRNAs involved in the PI3K/AKT/mTOR signaling pathway, a critical regulator of cancer progression.
Methods: We analyzed tumor tissues from five breast cancer subtypes-luminal A, luminal B HER2-negative, luminal B HER2-positive, HER2-positive, and triple-negative breast cancer (TNBC)-and compared them with non-cancerous tissues.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!