Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

J Robot Surg

Departments of Mechanical Science and Engineering and Bioengineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL, 61801, USA.

Published: December 2015

We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11701-015-0531-2DOI Listing

Publication Analysis

Top Keywords

nonlinear soft
12
soft tissue
12
tissue deformations
8
tissue
5
high-speed nonlinear
4
tissue deformation
4
deformation simulations
4
simulations abaqus
4
abaqus software
4
software aim
4

Similar Publications

The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery.

View Article and Find Full Text PDF

Topology Design of Soft Phononic Crystals for Tunable Band Gaps: A Deep Learning Approach.

Materials (Basel)

January 2025

School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China.

The phononic crystals composed of soft materials have received extensive attention owing to the extraordinary behavior when undergoing large deformations, making it possible to provide tunable band gaps actively. However, the inverse designs of them mainly rely on the gradient-driven or gradient-free optimization schemes, which require sensitivity analysis or cause time-consuming, lacking intelligence and flexibility. To this end, a deep learning-based framework composed of a conditional variational autoencoder and multilayer perceptron is proposed to discover the mapping relation from the band gaps to the topology layout applied with prestress.

View Article and Find Full Text PDF

Multiple and transforming vibrational identities of atoms in amorphous solids.

J Chem Phys

January 2025

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

Identifying the diverse roles of disorderly packed atoms inside an amorphous solid has been a highly pursued but daunting task in glass physics. By analyzing the full-frequency vibrational modes of a model Cu50Zr50 glass, here, we classify the internal atoms into low-, subhigh-, and high-frequency ones that have different tendencies for rearrangements upon excitations. We find that low-frequency atoms are structurally unfavored and tend to aggregate.

View Article and Find Full Text PDF

Versatile graceful degradation framework for bio-inspired proprioception with redundant soft sensors.

Front Robot AI

January 2025

Neuro-robotics Laboratory, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.

Reliable proprioception and feedback from soft sensors are crucial for enabling soft robots to function intelligently in real-world environments. Nevertheless, soft sensors are fragile and are susceptible to various damage sources in such environments. Some researchers have utilized redundant configuration, where healthy sensors compensate instantaneously for lost ones to maintain proprioception accuracy.

View Article and Find Full Text PDF

Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!