Large, non-symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square-planar coordination of tetravalent Pd(II) , yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L6 containing 60 well-defined chiral centers in its flower-like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L3 Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations. Furthermore, a mixture of two constitutional isomers of trimer, 2 and 2', and dimer, 3 and 3', can be obtained directly from L by its coordination to trans- or cis-N-pyridyl-coordinating Pd(II) . These intriguing, water-resistant, stable supramolecular assemblies have been thoroughly described by (1) H DOSY NMR, mass spectrometry, circular dichroism, molecular modelling, and drift tube ion-mobility mass spectrometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201506539 | DOI Listing |
Orphanet J Rare Dis
January 2025
Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, Únicas SJD Center, Hospital Sant Joan de Déu, Barcelona, Spain.
Background: Rare diseases (RDs) are a heterogeneous group of complex and low-prevalence conditions in which the time to establish a definitive diagnosis is often too long. In addition, for most RDs, few to no treatments are available and it is often difficult to find a specialized care team.
Objectives: The project "acERca las enfermedades raras" (in English: "bringing RDs closer") is an initiative primary designed to generate a consensus by a multidisciplinary group of experts to detect the strengths and weaknesses in the public healthcare system concerning the comprehensive care of persons living with a RD (PLWRD) in the region of Catalonia, Spain, where a Network of Clinical Expert Units (Xarxa d'Unitats de Expertesa Clínica or XUEC) was created and is being implemented since 2015.
Commun Chem
January 2025
Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.
View Article and Find Full Text PDFMem Cognit
January 2025
Department of Human Sciences, Institute of Psychology, General Psychology, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
This study explores multi-tasking by examining the effects of transitioning from dual-task to triple-task scenarios. Our research extends beyond conventional dual-task paradigms to investigate the impact of triple-task performance on two participant groups: those unprepared in single, dual, or triple tasks (N = 14) and those previously prepared in single and dual tasks (N = 13). The study consisted of a preparation phase with nine sessions and an assessment phase with eight sessions.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
The copolymerization of ethylene with polar monomers presents a significant challenge. While palladium catalysts have shown promise, nickel catalysts are more economical but suffer from poor activity. Previous studies suggest that the isomerization step involved in the nickel-catalyzed polymerization may influence the catalyst activities.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Inorganic Chemistry, Georg-August-Universität Göttingen, Göttingen Tammannstrasse 4, D-37077, Germany.
The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!