In this study a classic Raman spectroscopy method is applied and the intensity ratio of Stokes and anti-Stokes peaks is used to measure the temperature of thermostatically controlled TiO2 thin films. In addition, three mathematical formulae are used and analyzed to estimate the temperature of the TiO2 thin films. Overheating of the samples above the thermostatically controlled temperature was observed while recording the Raman spectra, with a temperature increase of up to 30 K being detected. DFT-periodic calculations showed that the anatase (101) surface had a smaller band gap than bulk anatase. Thus, it can absorb the laser radiation with a wavelength of 532 nm that is used in the experimental setup. Part of the absorbed photon energy transfers into phonon energy, heating up the anatase phase, thus leading to the heating of the samples. Moreover, overheating of the samples indicates that the experimental method used in this study can lead to deviations in their real absolute temperature values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201500933 | DOI Listing |
Electrophoresis
December 2024
Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
An empirical equation relating electrophoretic mobility and ionic strength was proposed. The equation includes a number of parameters that are found using the mobilities of reference ions: two coefficients in the numerator describing the linear relationship of the multiplier in front of the square root of the ionic strength with the product of the ion mobility in the background electrolyte (BGE) without additives by the modulus of the charge number, raised to a certain power, and also the multiplier in the denominator before the square root of the ionic strength. The proposed equation was tested using the mobilities measured in BGEs with the addition of sodium chloride to adjust ionic strength and sulfated β-cyclodextrin (S-β-CD) for 11 anions with charge numbers from -1 to -4.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2024
Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan.
There are various flows inside and outside cells in vivo. Nonequilibrium molecular dynamics (NEMD) simulation is a useful tool for understanding the effects of these flows on the dynamics of biomolecules. We propose an NEMD method to generate a Poiseuille-like flow between lipid bilayers.
View Article and Find Full Text PDFFoods
September 2024
College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China.
This study investigates the effect of variable-temperature roasting on the flavor compounds of Xinjiang tannur-roasted mutton. Gas chromatography coupled with ion mobility spectroscopy (GC-IMS) was used to compare and analyze the volatile components and flavor fingerprints of Xinjiang tannur-roasted mutton using variable-temperature electrically heated air roasting (VTR), constant-temperature electrically heated air roasting (EHAR), and constant-burning charcoal roasting (BCR) techniques. The changes in fatty acids and free amino acids in Xinjiang tannur-roasted mutton under different roasting conditions were compared.
View Article and Find Full Text PDFJ Mol Model
September 2024
Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Context: The decomposition process of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) crystal at high temperatures (2500 and 3390 K) and detonation pressure of 33.4 GPa coupled with temperatures were studied by ab initio molecular dynamics simulations. The results show that the initial decomposition mechanism of LLM-105 is the same under different conditions.
View Article and Find Full Text PDFAdv Exp Med Biol
September 2024
Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
A new behavioral test was developed to investigate the neural mechanisms of voluntary, behavioral thermoregulatory responses. The apparatus used in this test consisted of a thermostatic chamber that maintained the ambient temperature at a chosen level and two side-by-side floor plates that were placed in the thermostatic chamber and could be set to different temperatures. As the three temperatures, ambient temperature and two plate temperatures, can be controlled independently, we term this behavioral test the three-temperature (3 T) test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!