Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli.

mBio

BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA

Published: November 2015

Unlabelled: Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications.

Importance: Hypochlorite is used in vast quantities for water disinfection, killing bacteria on surfaces, and washing and whitening. In pools, spas, and other waters, hypochlorite is frequently delivered as chlorinated isocyanuric acids that release hypochlorite and cyanuric acid. Over time, cyanuric acid accumulates and impairs disinfection and must be removed. The microbial enzyme cyanuric acid hydrolase can potentially remove cyanuric acid to restore disinfection and protect swimmers. Whole bacterial cells expressing cyanuric acid hydrolase were encapsulated in an inert silica matrix containing an amine group. The amine group serves to permeabilize the cell membrane and accelerate cyanuric acid degradation, and it also reacts with hypochlorite to protect against inactivation of cyanuric acid hydrolase. Methods for promoting whole-cell biocatalysis are important in biotechnology, and the present work illustrates approaches to enhance rates and protect against an inhibitory substance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631802PMC
http://dx.doi.org/10.1128/mBio.01477-15DOI Listing

Publication Analysis

Top Keywords

cyanuric acid
48
acid hydrolase
20
hypochlorite
12
cyanuric
12
acid
12
cells expressing
12
chlorinated isocyanuric
8
isocyanuric acids
8
cells
8
expressing cyanuric
8

Similar Publications

Melamine and Cyanuric Acid in Milk and Their Quantities, Analytical Methods and Exposure Risk: A Systematic Review and Meta-analysis.

J Food Prot

January 2025

Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Melamine, as a toxic compound, needs to be controlled in food, especially in dairy products. In this systematic study, quantities of melamine and cyanuric acid in various types of milk were investigated. A comprehensive database search was performed using the keywords pasteurized milk, milk, sterilized milk, melamine, and cyanuric acid without time limitation.

View Article and Find Full Text PDF

Melamine, its analogues, and aromatic amines (AAs) were commonly detected in a previous study of pregnant women in the Environmental influences on Child Health Outcomes (ECHO) Cohort. While these chemicals have identified toxicities, little is known about their influences on fetal development. We measured these chemicals in gestational urine samples in 3 ECHO cohort sites to assess associations with birth outcomes (n = 1,231).

View Article and Find Full Text PDF

In this work, we elucidate the electronic charge redistributions that occur within the cyanuric acid (CA) and melamine (M) molecules upon formation of the triple H-bond between the imide group of CA and the diaminopyridine group of M. To achieve this, we investigated 2D H-bonded assemblies of M, CA and CA*M grown on the Au(111) surface, using X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopies. Compared to the homomolecular networks, the spectra of the mixed sample reveal core level shifts in opposite directions for CA and M, indicating a nearly complementary charge accumulation on the CA molecule and a charge depletion on the M molecule.

View Article and Find Full Text PDF

Stable, Full-Color, Long-Lasting Aqueous Room-Temperature Phosphorescent Materials.

Small

January 2025

Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China.

Ultralong room-temperature phosphorescent (URTP) materials have garnered significant attention in anti-counterfeiting, optoelectronic displays, and bio-imaging due to their unique optical properties. However, most URTP materials exhibit weak emission or are quenched in aqueous solutions. This study proposes a simple and effective strategy for preparing full-color aqueous URTP materials using a one-step microwave method.

View Article and Find Full Text PDF

Subchronic cyanuric acid treatment impairs spatial flexible behavior in female adolescent rats through depressing GluN2B-dependent neuronal and synaptic function.

Ecotoxicol Environ Saf

January 2025

Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China; Department of Chinese Medicine, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Graduate School of Guangzhou University of Chinese Medicine; Guangzhou 510006, China; Department of Proctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China. Electronic address:

Subchronic exposure to cyanuric acid (CA) and its structural analogue melamine induces long-term effects on brain and behavior in male rodents. To examine if this exposure induced negative effects on cognitive function in females, we examined the behavioral performance and further attempted to investigate synaptic and neuronal function. CA was intraperitoneal treated with 20 or 40 mg/kg/day to adolescent female rats for 4 consecutive weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!