Introduction: Current methods for early diagnosis of osteoarthritis (OA) are limited. We assessed whether in vivo detection of chondrocyte death by ApoPep-1 (CQRPPR), a peptide that binds to histone H1 of apoptotic and necrotic cells, could be used to detect the initiation of OA.
Methods: Apoptosis-induced ATDC5 cells were labeled with Annexin V and ApoPep-1. Surgical destabilization of the medial meniscus (DMM) was performed on both knees of 12-week-old male mice and severity of OA was determined by histological analysis according to the Osteoarthritis Research Society International (OARSI) guidelines. At 1, 2, 4, and 8 weeks post-surgery, mice were intravenously injected with fluorescence-labeled ApoPep-1 or control peptide and in vivo imaging was performed within 30 minutes of injection by near-infrared fluorescence (NIRF). Binding of ApoPep-1 to OA joints was demonstrated by ex vivo imaging and immunofluorescent staining using TUNEL and histone H1 and type II collagen antibodies.
Results: Strong signals of ApoPep-1 were observed on the apoptotic ATDC5 cells. Knees corresponded to grade II, III, and V OA at 2, 4, and 8 weeks after DMM, respectively. Between 2 and 8 weeks after surgery, the in vivo NIRF signal at OA-ApoPep1-injected joints was consistently stronger than sham-operated or OA-control peptide-injected joints. ApoPep-1, TUNEL, and histone H1 signals were stronger in grade II OA cartilage than sham-operated cartilage when detected by immunofluorescent staining. Type II collagen expression was similar between grade II OA and sham group.
Conclusion: ApoPep-1 can be used to detect OA in vivo by binding to apoptotic chondrocytes. This is a novel, sensitive, and rapid method which can detect apoptotic cells in OA rodent models soon after its onset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632461 | PMC |
http://dx.doi.org/10.1186/s13075-015-0832-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!