A challenging issue for echocardiographic image interpretation is the accurate analysis of small transient motions of myocardium and valves during real-time visualization. A higher frame rate video may reduce this difficulty, and temporal super resolution (TSR) is useful for illustrating the fast-moving structures. In this paper, we introduce a novel framework that optimizes TSR enhancement of echocardiographic images by utilizing temporal information and sparse representation. The goal of this method is to increase the frame rate of echocardiographic videos, and therefore enable more accurate analyses of moving structures. For the proposed method, we first derived temporal information by extracting intensity variation time curves (IVTCs) assessed for each pixel. We then designed both low-resolution and high-resolution overcomplete dictionaries based on prior knowledge of the temporal signals and a set of prespecified known functions. The IVTCs can then be described as linear combinations of a few prototype atoms in the low-resolution dictionary. We used the Bayesian compressive sensing (BCS) sparse recovery algorithm to find the sparse coefficients of the signals. We extracted the sparse coefficients and the corresponding active atoms in the low-resolution dictionary to construct new sparse coefficients corresponding to the high-resolution dictionary. Using the estimated atoms and the high-resolution dictionary, a new IVTC with more samples was constructed. Finally, by placing the new IVTC signals in the original IVTC positions, we were able to reconstruct the original echocardiography video with more frames. The proposed method does not require training of low-resolution and high-resolution dictionaries, nor does it require motion estimation; it does not blur fast-moving objects, and does not have blocking artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2015.2493881DOI Listing

Publication Analysis

Top Keywords

sparse coefficients
12
temporal super
8
super resolution
8
enhancement echocardiographic
8
echocardiographic images
8
sparse representation
8
frame rate
8
proposed method
8
low-resolution high-resolution
8
atoms low-resolution
8

Similar Publications

Exploring Brain Imaging and Genetic Risk Factors in Different Progression States of Alzheimer's Disease Through OSnetNMF-Based Methods.

J Mol Neurosci

January 2025

Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD.

View Article and Find Full Text PDF

Automatic medical imaging segmentation via self-supervising large-scale convolutional neural networks.

Radiother Oncol

January 2025

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology Atlanta, GA 30308, USA. Electronic address:

Purpose: This study aims to develop a robust, large-scale deep learning model for medical image segmentation, leveraging self-supervised learning to overcome the limitations of supervised learning and data variability in clinical settings.

Methods And Materials: We curated a substantial multi-center CT dataset for self-supervised pre-training using masked image modeling with sparse submanifold convolution. We designed a series of Sparse Submanifold U-Nets (SS-UNets) of varying sizes and performed self-supervised pre-training.

View Article and Find Full Text PDF

Background/objectives: Cystoscopy is necessary for diagnosing bladder cancer, but it has limitations in identifying ambiguous lesions, such as carcinoma in situ (CIS), which leads to a high recurrence rate of bladder cancer. With the significant advancements in deep learning in the medical field, several studies have explored its application in cystoscopy. This study aimed to utilize the VGG19 and Deeplab v3+ deep learning models to classify and segment cystoscope images, respectively.

View Article and Find Full Text PDF

Uncovering Dynamical Equations of Stochastic Decision Models Using Data-Driven SINDy Algorithm.

Neural Comput

January 2025

Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, BT48 7JL Derry-Londonderry, Northern Ireland, U.K.

Decision formation in perceptual decision making involves sensory evidence accumulation instantiated by the temporal integration of an internal decision variable toward some decision criterion or threshold, as described by sequential sampling theoretical models. The decision variable can be represented in the form of experimentally observable neural activities. Hence, elucidating the appropriate theoretical model becomes crucial to understanding the mechanisms underlying perceptual decision formation.

View Article and Find Full Text PDF

COLLABORATIVE NETWORKS IN GASTROENTEROLOGY RESEARCH: A CO-AUTHORSHIP NETWORK ANALYSIS (2000-2023).

Arq Gastroenterol

January 2025

Editorial Department, The Japanese Society of Internal Medicine, Tokyo, Japan.

Background: This study aims to analyze the co-authorship network in Gastroenterology research, focusing on publications from 2000 to 2023, to understand the collaborative relationships among researchers and identify key contributors in the field.

Methods: Using data from the Web of Science (WoS), I examined 18,855 Gastroenterology-related articles published between 2000 and 2023. The analysis was conducted using Python within the PyCharm environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!