AI Article Synopsis

  • Parallel Coordinate Plots (PCPs) are effective for visualizing multivariate data but can become cluttered with large datasets, making it hard to identify patterns.
  • A new technique called Orientation-enhanced Parallel Coordinate Plots (OPCPs) highlights the data's structure and improves the visibility of patterns and outliers by enhancing certain parts of the lines based on slope.
  • The accompanying Orientation-enhanced Brushing (O-Brushing) method simplifies the selection of data patterns, reducing user effort and proving to be more effective in handling complex datasets, as confirmed by user evaluations.

Article Abstract

Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualization of multivariate data. However, for large datasets, the representation suffers from clutter due to overplotting. In this case, discerning the underlying data information and selecting specific interesting patterns can become difficult. We propose a new and simple technique to improve the display of PCPs by emphasizing the underlying data structure. Our Orientation-enhanced Parallel Coordinate Plots (OPCPs) improve pattern and outlier discernibility by visually enhancing parts of each PCP polyline with respect to its slope. This enhancement also allows us to introduce a novel and efficient selection method, the Orientation-enhanced Brushing (O-Brushing). Our solution is particularly useful when multiple patterns are present or when the view on certain patterns is obstructed by noise. We present the results of our approach with several synthetic and real-world datasets. Finally, we conducted a user evaluation, which verifies the advantages of the OPCPs in terms of discernibility of information in complex data. It also confirms that O-Brushing eases the selection of data patterns in PCPs and reduces the amount of necessary user interactions compared to state-of-the-art brushing techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2015.2467872DOI Listing

Publication Analysis

Top Keywords

parallel coordinate
12
coordinate plots
12
orientation-enhanced parallel
8
underlying data
8
data
5
plots parallel
4
plots pcps
4
pcps powerful
4
powerful techniques
4
techniques visualization
4

Similar Publications

Importance: Knee osteoarthritis (OA) is a common degenerative joint disease in aging populations. Knee OA is difficult to cure and requires ongoing management. Thread embedding acupuncture (TEA) is a popular Korean medical treatment for knee OA.

View Article and Find Full Text PDF

Taking into account phase-polarization interactions is crucial for the formation of spatially structured laser beams. The effects that arise in this context can lead to the modulation of individual field components and the transformation of the overall light field. In this study, we investigate the impact of phase and polarization distributions with radial dependencies in polar coordinates on the longitudinal component of laser beams passing through a transmissive spatial light modulator (SLM) based on twisted nematic liquid crystals.

View Article and Find Full Text PDF

Controlling trap depth is crucial to improve photocatalytic activity, but designing such crystal structures has been challenging. In this study, we discovered that in 2D materials like BiOCl and Bi4NbO8Cl, composed of interleaved [Bi2O2]2+ and Cl- slabs, the trap depth can be controlled by manipulating the slab stacking structure. In BiOCl, oxygen vacancies (VO) create deep electron traps, while chlorine vacancies (VCl) produce shallow traps.

View Article and Find Full Text PDF

The title compound, [Zn(CHClNO)Cl], is a dinuclear zinc(II) complex with three chlorido ligands and one penta-dentate ligand containing quinolin-8-olato and bis-(pyridin-2-ylmeth-yl)amine groups. One of the two Zn atom adopts a tetra-hedral geometry and coordinates two chlorido ligands with chelate coord-ination of the N and O atoms of the quinolin-8-olato group in the ligand. The other Zn atom adopts a distorted trigonal-bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis-(pyridin-2-ylmeth-yl)amine unit.

View Article and Find Full Text PDF

Crystal structure of -poly[[di-aqua-di-imida-zole-cobalt(II)]-μ-2,3,5,6-tetra-bromo-benzene-1,4-di-carboxyl-ato].

Acta Crystallogr E Crystallogr Commun

October 2024

Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.

The asymmetric unit of the title compound, [Co(CBrO)(CHN)(HO)] or [Co(Brbdc)(im)(HO)] , comprises half of Co ion, tetra-bromo-benzene-dicarboxylate (Brbdc), imidazole (im) and a water mol-ecule. The Co ion exhibits a six-coordinated octa-hedral geometry with two oxygen atoms of the Brbdc ligand, two oxygen atoms of the water mol-ecules, and two nitro-gen atoms of the im ligands. The carboxyl-ate group is nearly perpendicular to the benzene ring and shows monodentate coordination to the Co ion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!