T1ρ relaxation time in brain regions increases with ageing: an experimental MRI observation in rats.

Br J Radiol

1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.

Published: May 2016

Objective: T1ρ variation is associated with neurodegenerative diseases. This study aims to observe T1ρ relaxation time changes in rat brains associated with normal ageing in Sprague-Dawley (SD) rats, Wistar Kyoto (WKY) rats and spontaneously hypertension rats (SHRs).

Methods: 18 male SD rats, 11 male WKY rats and 11 male SHRs were used. T1ρ measurement was performed at 3-T MR with a spin-lock frequency of 500 Hz. SD rats were scanned at the ages of 5, 8, 10 and 15 months. SHRs and WKY rats were scanned at the ages of 6, 9 and 12 months.

Results: For SD rats, T1ρ at the thalamus, hippocampus and frontal cortices increased significantly from 5 to 15 months (p < 0.05). For the WKY rats and SHRs, the T1ρ values in the thalamus, hippocampus and frontal cortices also increased significantly from 6 to 12 months (p < 0.05). Furthermore, T1ρ in the thalamus, hippocampus and frontal cortices of SHRs were consistently higher than those of WKY rats at the ages of 6, 9 and 12 months (p < 0.05). The percentage regional T1ρ differences between WKY rats and SHRs did not change during ageing.

Conclusion: An increase in T1ρ was associated with age-related changes of the rat brain.

Advances In Knowledge: An age-related and hypertension-related T1ρ increase in rat brain regions was observed in the thalamus, hippocampus and frontal cortical regions of the rat brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4985938PMC
http://dx.doi.org/10.1259/bjr.20140704DOI Listing

Publication Analysis

Top Keywords

wky rats
12
rats
9
t1ρ relaxation
8
relaxation time
8
rats male
8
rats scanned
8
scanned ages
8
t1ρ
5
time brain
4
brain regions
4

Similar Publications

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Objectives: To explore the mechanism of Granules (QDG) for alleviating brain damage in spontaneously hypertensive rats (SHRs).

Methods: Twelve 5-week-old SHRs were randomized into SHR control group and SHR+QDG group treated with QDG by gavage at the daily dose of 0.9 g/kg for 12 weeks.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.

Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.

View Article and Find Full Text PDF

Aims: We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment.

Methods: We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

NPA7: A Dual Receptor Activating Peptide That Inhibits Cardiac Oxidative Stress.

Hypertension

January 2025

Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (Xiaoyu Ma, J.C.M., D.G.M., Xiao Ma, Y.Z., S.P., Y.W., S.J.S., J.C.B.).

Background: Cardiomyocyte oxidative stress significantly contributes to the progression of hypertension-induced heart failure, highlighting the need for targeted therapies. We developed a novel peptide, NPA7, that coactivates the GC-A (guanylyl cyclase A)/cGMP and MasR (Mas receptor)/cAMP pathway. This study aimed to test NPA7's ability to inhibit oxidative stress by modulating the p62-KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2-related factor 2) pathway in human cardiomyocytes (HCMs) and a rat model of hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!