Early detection of emerging disease events is a priority focus area for cooperative bioengagement programs. Communication and coordination among national disease surveillance and response networks are essential for timely detection and control of a public health event. Although systematic information sharing between the human and animal health sectors can help stakeholders detect and respond to zoonotic diseases rapidly, resource constraints, and other barriers often prevent efficient cross-sector reporting. The purpose of this research project was to map the laboratory and surveillance networks currently in place for detecting and reporting priority zoonotic diseases in Jordan in order to identify the nodes of communication, coordination, and decision-making where health and veterinary sectors intersect, and to identify priorities and gaps that limit information sharing for action. We selected three zoonotic diseases as case studies: highly pathogenic avian influenza (HPAI) H5N1, rabies, and brucellosis. Through meetings with government agencies and health officials, and desk research, we mapped each system from the index case through response - including both surveillance and laboratory networks, highlighting both areas of strength and those that would benefit from capacity-building resources. Our major findings indicate informal communication exists across sectors; in the event of emergence of one of the priority zoonoses studied, there is effective coordination across the Ministry of Health and Ministry of Agriculture. However, routine formal coordination is lacking. Overall, there is a strong desire and commitment for multi-sectoral coordination in detection and response to zoonoses across public health and veterinary sectors. Our analysis indicates that the networks developed in response to HPAI can and should be leveraged to develop a comprehensive laboratory and surveillance One Health network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600904 | PMC |
http://dx.doi.org/10.3389/fpubh.2015.00219 | DOI Listing |
Parasit Vectors
December 2024
United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Centre, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA.
Background: Parasites in the apicomplexan genus Sarcocystis infect cattle worldwide. Assessing the economic importance of each such parasite species requires proper diagnosis. Sarcocystis cruzi, a thin-walled species, infects virtually all cattle.
View Article and Find Full Text PDFCytokine
December 2024
Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:
In the post-pandemic era, research on respiratory diseases should refocus on pathogens other than the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Respiratory pathogens, highly infectious to children, with to different modes of infection, such as single-pathogen infections and co-infections. Understanding the seasonal patterns of these pathogens, alongside identifying single infections and co-infections and their impact on the pediatric immune status, is crucial for clinical diagnosis, treatment, and prognosis in children.
View Article and Find Full Text PDFPoult Sci
December 2024
DTU National Food Institute, Research Group for Foodborne Pathogens and Epidemiology, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark.
The Campylobacter prevalence in free-ranging broiler flocks is usually higher than in conventional flocks, and effective interventions for this production type are needed. This study aimed to investigate the on-farm Campylobacter-reducing effect of feeding three feed additives or a water additive to broilers from hatching to slaughter. Newly hatched Ranger Gold broilers (n = 140) were randomly placed into five cages (n = 28/cage) within a flock of 6,000 broilers.
View Article and Find Full Text PDFTranspl Infect Dis
December 2024
Transplant Infectious Diseases, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA.
We report a case of Acanthamoeba infection in an HCT recipient with steroid-refractory GVHD. We highlight the multiple challenges that free-living ameba infections present to the clinician, the clinical laboratory, transplant infectious disease for review, hospital epidemiology if nosocomial transmission is considered, and public health officials, as exposure source identification can be a significant challenge. Transplant physicians should include Acanthamoeba infections in their differential diagnosis of a patient with skin, sinus, lung, and/or brain involvement.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
December 2024
Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
Purpose: Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!