This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623458PMC
http://dx.doi.org/10.1038/sdata.2015.57DOI Listing

Publication Analysis

Top Keywords

data set
8
sensor data
8
marine scientists
8
classification scheme
8
data
7
images
5
marine
5
australian
4
australian sea-floor
4
sea-floor survey
4

Similar Publications

ADELLE: A global testing method for trans-eQTL mapping.

PLoS Genet

January 2025

Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America.

Understanding the genetic regulatory mechanisms of gene expression is an ongoing challenge. Genetic variants that are associated with expression levels are readily identified when they are proximal to the gene (i.e.

View Article and Find Full Text PDF

Rainfall-induced landslides are a frequent geohazard for tropical regions with prevalent residual soils and year-round rainy seasons. The water infiltration into unsaturated soil can be analyzed using the soil-water characteristic curve (SWCC) and permeability function which can be used to monitor and predict incoming landslides, showing the necessity of selecting the appropriate model parameter while fitting the SWCC model. This paper presents a set of data from six different sections of the studied slope at varying depths that are used to test the performance of three SWCC models, the van Genuchten-Mualem (vG-M), Fredlund-Xing (F-X) and Gardner (G).

View Article and Find Full Text PDF

This work provides a statistical analysis of four different approaches suggested in the literature for the estimation of an unknown concentration based on data collected using the standard addition method. These approaches are the conventional extrapolation approach, the interpolation approach, inverse regression, and the normalization approach. These methods are compared under the assumption that the measurement errors are normally distributed and homoscedastic.

View Article and Find Full Text PDF

Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.

View Article and Find Full Text PDF

Tobramycin dosing in patients with cystic fibrosis (CF) is challenged by its high pharmacokinetic (PK) variability and narrow therapeutic window. Doses are typically individualized using two-sample log-linear regression (LLR) to quantify the area under the concentration-time curve (AUC). Bayesian model-informed precision dosing (MIPD) may allow dose individualization with fewer samples; however, the relative performance of these methods is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!