Introduction: The aim of the study was to evaluate the potential association of single gene polymorphisms of the antioxidant enzymes manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPX1) with prostate cancer (PCa).
Material And Methods: Manganese superoxide dismutase and glutathione peroxidase 1 genotypes and allele frequencies in 49 prostate cancer cases (PCa group) and 98 control subjects were determined. Analysis of genotypes in control group individuals were performed in two subgroups according to serum prostate-specific antigen levels: the control group (n = 49), with prostate specific antigen (PSA) level < 4 ng/ml; and the nonPCa-high PSA control group (n = 49), with serum PSA > 4 ng/ml. Determination of MnSOD Ala-9Val and GPX1 Pro198Leu polymorphisms was performed using real-time polymerase chain reaction amplification.
Results: No association was found between GPX1 polymorphisms and PCa in all groups (p > 0.05). In the PCa group, the frequency of homozygote Val allele carriers was significantly higher in comparison to nonPCa-high PSA control cases. Therefore, Val/Val genotype was found significantly suspicious for PCa risk (OR = 2.48; 95% CI: 1.37-4.48; p = 0.002). Furthermore, an overall protective effect of the Ala allele of the MnSOD polymorphism on PCa risk was detected. These findings in this small Turkish population suggested that individual risk of PCa may be modulated by MnSOD polymorphism especially in patients with high PSA, but GPX1 polymorphism seemed to have no effect on PCa risk.
Conclusions: The presence of genetic variants of antioxidant enzymes could have a potential influence on genesis of prostatic malignancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624743 | PMC |
http://dx.doi.org/10.5114/aoms.2015.54853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!