One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602307 | PMC |
http://dx.doi.org/10.3389/fimmu.2015.00530 | DOI Listing |
Front Immunol
January 2025
Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland.
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease, characterized by impaired wound repair, tissue remodeling and fibrosis. Immune system may participate in the development and progression of the disease as indicated by altered activity in IPF sufferers. This study investigates the immune response to the BNT162b2 COVID-19 vaccine in patients with IPF compared to healthy controls, with a particular focus on evaluation of antibody responses, interferon-gamma release, cytokine profiling and a broad panel of immune cell subpopulations.
View Article and Find Full Text PDFSci Immunol
January 2025
Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.
View Article and Find Full Text PDFOncoimmunology
December 2025
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Regulatory T cells (Tregs) contribute significantly to the immunosuppressive nature of the tumor microenvironment which is a main barrier for immunotherapies of solid cancers. Reducing Treg numbers enhances anti-tumor immune responses but current depletion strategies also impair effector T cells (Teffs), potentially leading to reduced anti-tumor immunity and/or autoimmune diseases. CD137 has been identified as the most differentially expressed gene between peripheral Tregs and intratumoral Tregs in virtually all solid cancers.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457.
Extracellular and transmembrane proteins, which account for the products of approximately 40% of all protein-encoding genes in tumors, play a crucial role in shaping the tumor immunosuppressive microenvironment (TIME). While protein degradation therapy has been applied to membrane proteins of cancer cells, it has rarely been extended to immune cells. We herein report a polymeric nanolysosome targeting chimera (nano-LYTAC) that undergoes membrane protein degradation on M2 macrophages and generates a sonodynamic effect for combinational cancer immunotherapy.
View Article and Find Full Text PDFFront Aging
November 2024
Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China.
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. In addition to the wear and tear of joints, aberrant remodelling driven by a significant presence of inflammatory mediators within the joint is one of the key mechanisms in the pathogenesis of OA. Among these factors, hyperactivation of Teffs subsets plays a crucial role in promoting this pathological process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!