Support for the slip hypothesis from whisker-related tactile perception of rats in a noisy environment.

Front Integr Neurosci

Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany ; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany.

Published: November 2015

Rodents use active whisker movements to explore their environment. The "slip hypothesis" of whisker-related tactile perception entails that short-lived kinematic events (abrupt whisker movements, called "slips", due to bioelastic whisker properties that occur during active touch of textures) carry the decisive texture information. Supporting this hypothesis, previous studies have shown that slip amplitude and frequency occur in a texture-dependent way. Further, experiments employing passive pulsatile whisker deflections revealed that perceptual performance based on pulse kinematics (i.e., signatures that resemble slips) is far superior to the one based on time-integrated variables like frequency and intensity. So far, pulsatile stimuli were employed in a noise free environment. However, the realistic scenario involves background noise (e.g., evoked by rubbing across the texture). Therefore, if slips are used for tactile perception, the tactile neuronal system would need to differentiate slip-evoked spikes from those evoked by noise. To test the animals under these more realistic conditions, we presented passive whisker-deflections to head-fixed trained rats, consisting of "slip-like" events (waveforms mimicking slips occurring with touch of real textures) embedded into background noise. Varying the (i) shapes (ramp or pulse); (ii) kinematics (amplitude, velocity, etc.); and (iii) the probabilities of occurrence of slip-like events, we observed that rats could readily detect slip-like events of different shapes against noisy background. Psychophysical curves revealed that the difference of slip event and noise amplitude determined perception, while increased probability of occurrence (frequency) had barely any effect. These results strongly support the notion that encoding of kinematics dominantly determines whisker-related tactile perception while the computation of frequency or intensity plays a minor role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606012PMC
http://dx.doi.org/10.3389/fnint.2015.00053DOI Listing

Publication Analysis

Top Keywords

tactile perception
16
whisker-related tactile
12
whisker movements
8
pulse kinematics
8
frequency intensity
8
background noise
8
slip-like events
8
tactile
5
perception
5
noise
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!