Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine.

J Exp Med

Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, 4000 Liège, Belgium Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium GIGA-Signal Transduction, University of Liège, 4000 Liège, Belgium Walloon Excellence in Life Sciences and Biotechnology, 1300 Wavre, Belgium

Published: November 2015

Tumor initiation in the intestine can rapidly occur from Lgr5(+) crypt columnar stem cells. Dclk1 is a marker of differentiated Tuft cells and, when coexpressed with Lgr5, also marks intestinal cancer stem cells. Here, we show that Elp3, the catalytic subunit of the Elongator complex, is required for Wnt-driven intestinal tumor initiation and radiation-induced regeneration by maintaining a subpool of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Elp3 deficiency dramatically delayed tumor appearance in Apc-mutated intestinal epithelia and greatly prolonged mice survival without affecting the normal epithelium. Specific ablation of Elp3 in Lgr5(+) cells resulted in marked reduction of polyp formation upon Apc inactivation, in part due to a decreased number of Lgr5(+)/Dclk1(+)/Sox9(+) cells. Mechanistically, Elp3 is induced by Wnt signaling and promotes Sox9 translation, which is needed to maintain the subpool of Lgr5(+)/Dclk1(+) cancer stem cells. Consequently, Elp3 or Sox9 depletion led to similar defects in Dclk1(+) cancer stem cells in ex vivo organoids. Finally, Elp3 deficiency strongly impaired radiation-induced intestinal regeneration, in part because of decreased Sox9 protein levels. Together, our data demonstrate the crucial role of Elp3 in maintaining a subpopulation of Lgr5-derived and Sox9-expressing cells needed to trigger Wnt-driven tumor initiation in the intestine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647259PMC
http://dx.doi.org/10.1084/jem.20142288DOI Listing

Publication Analysis

Top Keywords

tumor initiation
16
stem cells
16
cancer stem
12
cells
9
elp3
8
initiation intestine
8
cells elp3
8
lgr5+/dclk1+/sox9+ cells
8
elp3 deficiency
8
tumor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!