Evolution of brain lesions in a patient with TREX1 cerebroretinal vasculopathy.

Neurology

From the University of Virginia (R.D., D.S., M.B.S.L., B.B.W.), Charlottesville; the UCLA School of Medicine (J.C.J.), Los Angeles, CA; and the Johns Hopkins University School of Medicine (D.D.L.), Baltimore, MD.

Published: November 2015

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000002092DOI Listing

Publication Analysis

Top Keywords

evolution brain
4
brain lesions
4
lesions patient
4
patient trex1
4
trex1 cerebroretinal
4
cerebroretinal vasculopathy
4
evolution
1
lesions
1
patient
1
trex1
1

Similar Publications

Transcranial direct current stimulation (tDCS) has gained significant attention as a potential therapeutic tool in stroke rehabilitation, promoting neuroplasticity and enhancing motor and cognitive recovery. Despite growing research, the field's evolution and key trends remain underexplored. This study aims to perform a bibliographic analysis of publications related to tDCS and stroke rehabilitation to assess the growth of the field.

View Article and Find Full Text PDF

Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM.

View Article and Find Full Text PDF

Studying Alzheimer's disease through an integrative serum metabolomic and lipoproteomic approach.

J Transl Med

January 2025

Center for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, 06129, Italy.

Background: Alzheimer's disease (AD) is the most frequent neurodegenerative disorder worldwide. The great variability in disease evolution and the incomplete understanding of the molecular mechanisms underlying AD make it difficult to predict when a patient will convert from prodromal stage to dementia. We hypothesize that metabolic alterations present at the level of the brain could be reflected at a systemic level in blood serum of patients, and that these alterations could be used as prognostic biomarkers.

View Article and Find Full Text PDF

Spatio-temporal transformers for decoding neural movement control.

J Neural Eng

January 2025

Department of Information Engineering, Electronics and Telecommunications, University of Rome La Sapienza, Piazzale Aldo Moro 5, Rome, 00185, ITALY.

Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activity in vivo remains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results. Approach: To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity.

View Article and Find Full Text PDF

It is critical to appreciate the role of the tumour-associated microenvironment (TME) in developing strategies for the effective therapy of cancer, as it is an important factor that determines the evolution and treatment response of tumours. This work combines machine learning and single-cell RNA sequencing (scRNA-seq) to explore the glioma tumour microenvironment's TME. With the help of genome-wide association studies (GWAS) and Mendelian randomization (MR), we found genetic variants associated with TME elements that affect cancer and cardiovascular disease outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!