We present a new publicly accessible web-service, RiboSoft, which implements a comprehensive hammerhead ribozyme design procedure. It accepts as input a target sequence (and some design parameters) then generates a set of ranked hammerhead ribozymes, which target the input sequence. This paper describes the implemented procedure, which takes into consideration multiple objectives leading to a multi-objective ranking of the computer-generated ribozymes. Many ribozymes were assayed and validated, including four ribozymes targeting the transcript of a disease-causing gene (a mutant version of PABPN1). These four ribozymes were successfully tested in vitro and in vivo, for their ability to cleave the targeted transcript. The wet-lab positive results of the test are presented here demonstrating the real-world potential of both hammerhead ribozymes and RiboSoft. RiboSoft is freely available at the website http://ribosoft.fungalgenomics.ca/ribosoft/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770207PMC
http://dx.doi.org/10.1093/nar/gkv1111DOI Listing

Publication Analysis

Top Keywords

hammerhead ribozymes
12
ribozymes
7
automated design
4
hammerhead
4
design hammerhead
4
ribozymes validation
4
validation targeting
4
targeting pabpn1
4
pabpn1 gene
4
gene transcript
4

Similar Publications

Cell-Specific Control of Mammalian Gene Expression Using DNA Repair Inducible Ribozyme Switches.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha, 410082, China.

The ability to control gene expression is vital for elucidating gene functions and developing next-generation therapeutics. Current techniques are challenged by the lack of cell-specific control designs or immunogenicity risk from foreign proteins. We develop a DNA repair inducible ribozyme switch that enables cell-specific control of gene expression in cells and in vivo.

View Article and Find Full Text PDF

Viroid-like colonists of human microbiomes.

Cell

November 2024

Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Pathology, Stanford, CA, USA. Electronic address:

Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents.

View Article and Find Full Text PDF

Diversity and impact of single-stranded RNA viruses in Czech populations.

mSystems

October 2024

Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia.

comprises some of the most devastating pathogens of conifers. Exploring virocontrol as a potential strategy to mitigate economic losses caused by these fungi holds promise for the future. In this study, we conducted a comprehensive screening for viruses in 98 .

View Article and Find Full Text PDF

Elucidating Evolutionary Mechanisms and Variants of the Hammerhead Ribozyme Using In Vitro Selection.

Chembiochem

November 2024

Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.

The Hammerhead Ribozyme (HHR) is a ubiquitous RNA enzyme that catalyzes site-specific intramolecular cleavage. While mutations to its catalytic core have traditionally been viewed as detrimental to its activity, several discoveries of naturally occurring variants of the full-length ribozyme challenge this notion, suggesting a deeper understanding of HHR evolution and functionality. By systematically introducing mutations at key nucleotide positions within the catalytic core, we generated single-, double-, and triple-mutation libraries to explore the sequence requirements and evolution of a full-length HHR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!