The K+ channel TASK1 modulates β-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway.

FASEB J

*University of Nice Sophia Antipolis, Nice, France; Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Valrose (iBV), Unité Mixte de Recherche (UMR) 7277, Nice, France; U1091, iBV, INSERM, Nice, France; UMR 7370 and Laboratories of Excellence, Ion Channel Science and Therapeutics, Laboratoire de PhysioMédecine Moléculaire (LP2M), CNRS, Nice, France; Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland, UMR 7284 and **U1081, CNRS, Institute for Research in Cancer and Aging in Nice, INSERM, Nice, France; Anatomopathology Service, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; Obesity Center, Department of Experimental and Clinical Medicine, Ancona, Italy; Warwick Medical School, University of Warwick, Coventry, United Kingdom

Published: February 2016

Brown adipose tissue (BAT) is essential for adaptive thermogenesis and dissipation of caloric excess through the activity of uncoupling protein (UCP)-1. BAT in humans is of great interest for the treatment of obesity and related diseases. In this study, the expression of Twik-related acid-sensitive K(+) channel (TASK)-1 [a pH-sensitive potassium channel encoded by the potassium channel, 2-pore domain, subfamily K, member 3 (Kcnk3) gene] correlated highly with Ucp1 expression in obese and cold-exposed mice. In addition, Task1-null mice, compared with their controls, became overweight, mainly because of an increase in white adipose tissue mass and BAT whitening. Task1(-/-)-mouse-derived brown adipocytes, compared with wild-type mouse-derived brown adipocytes, displayed an impaired β3-adrenergic receptor response that was characterized by a decrease in oxygen consumption, Ucp1 expression, and lipolysis. This phenotype was thought to be caused by an exacerbation of mineralocorticoid receptor (MR) signaling, given that it was mimicked by corticoids and reversed by an MR inhibitor. We concluded that the K(+) channel TASK1 controls the thermogenic activity in brown adipocytes through modulation of β-adrenergic receptor signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.15-277475DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
brown adipocytes
12
channel task1
8
brown adipose
8
mineralocorticoid receptor
8
potassium channel
8
ucp1 expression
8
receptor signaling
8
channel
5
brown
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!