Genomic imprinting depends on the establishment and maintenance of DNA methylation at imprinting control regions. However, the mechanisms by which these heritable marks influence allele-specific expression are not fully understood. By analyzing maternal, zygotic, maternal-zygotic, and conditional Trim28 mutants, we found that the transcription factor TRIM28 controls genomic imprinting through distinct mechanisms at different developmental stages. During early genome-wide reprogramming, both maternal and zygotic TRIM28 are required for the maintenance of methylation at germline imprints. However, in conditional Trim28 mutants, Gtl2-imprinted gene expression was lost despite normal methylation levels at the germline IG-DMR. These results provide evidence that TRIM28 controls imprinting after early embryonic reprogramming through a mechanism other than the maintenance of germline imprints. Additionally, our finding that secondary imprints were hypomethylated in TRIM28 mutants uncovers a requirement of TRIM28 after genome-wide reprogramming for interpreting germline imprints and regulating DNA methylation at imprinted gene promoters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644443 | PMC |
http://dx.doi.org/10.1016/j.celrep.2015.09.078 | DOI Listing |
Commun Med (Lond)
December 2024
Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
Background: Assisted reproductive technology (ART) has been associated with increased risks for growth disturbance, disrupted imprinting as well as cardiovascular and metabolic disorders. However, the molecular mechanisms and whether they are a result of the ART procedures or the underlying subfertility are unknown.
Methods: We performed genome-wide DNA methylation (EPIC Illumina microarrays) and gene expression (mRNA sequencing) analyses for a total of 80 ART and 77 control placentas.
Cells
November 2024
Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
Drug abuse continues to pose a significant challenge in HIV control efforts. In our investigation, we discovered that cocaine not only upregulates the expression of the DNA-dependent protein kinase (DNA-PK) but also augments DNA-PK activation by enhancing its phosphorylation at S2056. Moreover, DNA-PK phosphorylation triggers the higher localization of the DNA-PK into the nucleus.
View Article and Find Full Text PDFVet Res
November 2024
Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, Jiangsu Province, China.
In 2018, African swine fever virus (ASFV) emerged in China, causing extremely serious economic losses to the domestic pig industry. Infection with ASFV can cause disseminated coagulation, leading to the consumption of platelets and coagulation factors and severe bleeding. However, the mechanism of virus-induced coagulation has yet to be established.
View Article and Find Full Text PDFMol Cell
November 2024
Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Boston Veterans Affairs Healthcare System, Boston, MA 02132, USA. Electronic address:
Viruses
October 2024
Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126 Turin, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!