1. Little is known about the activities and regulation of cytochrome P4503A (CYP3A) enzymes in porcine colon in response to specific feeding components. 2. We added hydrolyzable tannins to the diet of fattening boars and studied its effect on the expression of hepatic and intestinal CYP3A. 3. In total, 51 Landrace × Large White boars were assigned to the following treatment groups: control (without the addition of hydrolysable tannins), T1 (diet-containing 1% hydrolysable tannin extract), T2 (diet-containing 2% hydrolysable tannin extract) and T3 (diet-containing 3% hydrolysable tannin extract). CYP3A expression and activity were measured in microsomes prepared from liver and colon tissue. 4. CYP3A protein expression and activity were increased in the colon of pigs fed 2% and 3% tannins, while no changes were observed with lower tannin concentrations, or in the liver of any treatment groups. Also, it was demonstrated that colon mucosa possess CYP3A activity similar to that measured in the liver. 5. The present results provide the first evidence that tannin supplementation can modulate CYP3A in porcine colon mucosa in vivo. The physiological significance of this finding for the health status of the individual animal needs further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00498254.2015.1099081 | DOI Listing |
Life Sci
December 2024
Department of Pharmacology, Institute of Medical Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Sciences, Gyeongsang National University Graduate School, Jinju 52727, Republic of Korea. Electronic address:
Ultraviolet (UV) exposure triggers skin aging primarily by disrupting skin barrier function, resulting in dry skin and wrinkle formation. Oyster hydrolysate (OH), as a functional food, has been reported for anti-cancer, anti-oxidant and anti-apoptotic effects. This study investigated the underlying mechanism of OH effect on UVB-induced skin aging in SKH1 hairless mice.
View Article and Find Full Text PDFAnimals (Basel)
August 2024
Center for Fisheries, Aquaculture, and Aquatic Sciences, Southern Illinois University, Carbondale, IL 62901, USA.
Fish protein hydrolysates used in larval diets have been prepared from a variety of fish species, with different enzymes used to hydrolyze the protein. This study's objectives were to determine the effect of the dietary inclusion of fish muscle hydrolysates obtained from species-specific muscle/enzymes-versus hydrolysates produced from muscle/enzymes of a different species-on the growth performance, survival, skeletal development, intestinal peptide uptake, and muscle-free amino acid (FAA) composition of larval Walleye (). Eight protein products were obtained for this study, comprising an unhydrolyzed and hydrolyzed product from each combination of muscle/enzymes from Walleye and Nile tilapia ().
View Article and Find Full Text PDFAppl Biochem Biotechnol
October 2024
Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA.
Fish protein hydrolysate (FPH) has shown immense potential as a dietary protein supplement and immunostimulant in aquaculture, especially in Nile tilapia production. Four isoproteic diets (30% crude protein) were prepared by including FPH at varying percentages (0%, 0.5%, 1%, and 2%).
View Article and Find Full Text PDFJ Nutr Sci Vitaminol (Tokyo)
March 2024
Department of Food Nutrition, Kagawa Nutrition University.
In this study, we investigated the effects of a porcine liver protein hydrolysate (PLH) diet on lipid metabolism in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type II diabetes. OLETF rats (20-wk-old males) were pair-fed with either a PLH diet containing 20% PLH or a casein diet for 14 wk. Dietary PLH significantly lowered serum cholesterol and phospholipid concentrations, mainly by decreasing low-density lipoprotein and high-density lipoprotein fractions.
View Article and Find Full Text PDFAnimals (Basel)
June 2023
Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48513, Republic of Korea.
An eight-week feeding trial was performed to evaluate the effects of yeast hydrolysate (YH) supplementation in a low-fishmeal diet on the growth, immune responses, intestinal histology and disease resistance of whiteleg shrimp (). Five experimental diets were produced by supplementing YH at 0 (CON), 0.5 (YH), 1 (YH), 2 (YH) and 4 (YH) % to a basal diet containing 10% fishmeal and compared with a positive control with 25% fishmeal (FM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!