Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr06248a | DOI Listing |
Mater Today Bio
February 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:
The metastasis and recurrence of cancer post-surgery remain the major reasons for treatment failures. Herein, a photo-immune nanoparticle decorating with M1 macrophage membrane (BD@LM) is designed based on the inflammatory environment after surgical resection. By loading photosensitizer black phosphorus quantum dots (BPQDs) and chemotherapeutics doxorubicin (DOX) in BD@LM nanoparticles, an effective chemophototherapy-mediated immunogenic cell death of tumor cells is triggered, subsequently leading to the maturation of dendritic cells for further immune cascade.
View Article and Find Full Text PDFFood Chem
January 2025
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China. Electronic address:
Carbon dots (CDs), one type of zero-dimensional carbon nanomaterial, showed extensive application in food analysis. Herein, CDs as fluorometry and colorimetry probes were developed to determine peroxydisulfate (PDS) and phosphate ion (Pi) in food samples. CDs were developed with one-pot hydrothermal process from 5-amino salicylic acid and o/m-phenylenediamine named o/m-CDs.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan. Electronic address:
Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India.
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!