Substrate Flexibility of a Mutated Acyltransferase Domain and Implications for Polyketide Biosynthesis.

Chem Biol

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany. Electronic address:

Published: November 2015

Polyketides are natural products frequently used for the treatment of various diseases, but their structural complexity hinders efficient derivatization. In this context, we recently introduced enzyme-directed mutasynthesis to incorporate non-native extender units into the biosynthesis of erythromycin. Modeling and mutagenesis studies led to the discovery of a variant of an acyltransferase domain in the erythromycin polyketide synthase capable of accepting a propargylated substrate. Here, we extend molecular rationalization of enzyme-substrate interactions through modeling, to investigate the incorporation of substrates with different degrees of saturation of the malonic acid side chain. This allowed the engineered biosynthesis of new erythromycin derivatives and the introduction of additional mutations into the AT domain for a further shift of the enzyme's substrate scope. Our approach yields non-native polyketide structures with functional groups that will simplify future derivatization approaches, and provides a blueprint for the engineering of AT domains to achieve efficient polyketide synthase diversification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2015.02.008DOI Listing

Publication Analysis

Top Keywords

acyltransferase domain
8
biosynthesis erythromycin
8
polyketide synthase
8
substrate flexibility
4
flexibility mutated
4
mutated acyltransferase
4
domain implications
4
polyketide
4
implications polyketide
4
polyketide biosynthesis
4

Similar Publications

Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.

View Article and Find Full Text PDF

Background: Insulin resistance and the G allele of rs738409 interact to create a greater risk of metabolic dysfunction-associated steatotic liver disease.

Objective: This study aims to confirm that one promising way to reduce insulin resistance is by following a very low-carbohydrate (VLC) dietary pattern.

Methods: Adults with rs738409-GG or -CG with liver steatosis and elevated liver function tests, were taught an ad libitum VLC diet, positive affect and mindful eating skills, goal setting, and self-monitoring and given feedback and coaching for 4 months.

View Article and Find Full Text PDF

Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.

View Article and Find Full Text PDF

ZDHHC3-LYPLA1 regulates PRRSV-2 replication through reversible palmitoylation.

Vet Microbiol

January 2025

Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood.

View Article and Find Full Text PDF

The current research revealed a strong link between lipid reprogramming and dysregulated lipid metabolism to the genesis and development of clear cell renal cell carcinoma (ccRCC). Pathologically, ccRCC exhibits a high concentration of lipid droplets within the cytoplasm. HIF-2α expression has previously been demonstrated to be elevated in ccRCC caused by mutations in the von Hippel-Lindau (VHL) gene, which plays a vital role in the development of renal cell carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!