Introduction: Successful endodontic treatment depends on elimination of the microorganisms through chemomechanical debridement. The aim of this in vitro study was to evaluate the effectiveness of Fragaria vesca (wild strawberry) extract (FVE) on the removal of smear layer (SL).

Methods And Materials: In this analytical-observational study, 40 extracted mandibular and maxillary human teeth were selected. After canal preparation with standard step-back technique, the teeth were randomly divided into 4 groups according to the irrigation solution: saline (negative control), 5.25% NaOCl+EDTA (positive control), FVE and FVE+EDTA. The teeth were split longitudinally so that scanning electron microscopy (SEM) photomicrographs could be taken to evaluate the amount of remnant SL in coronal, middle and apical thirds. The data were analyzed statistically by the Kruskal-Wallis and Mann Whitney U tests and the level of significance was set at 0.05.

Results: Significant differences were found among the groups (P<0.001). The use of NaOCl+EDTA was the most effective regimen for removing the SL followed by FVE+EDTA. FVE alone was significantly more effective than saline (P<0.001).

Conclusion: FVE with and without EDTA could effectively remove the smear layer; however, compared to NaOCl group it was less effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609737PMC
http://dx.doi.org/10.7508/iej.2015.03.012DOI Listing

Publication Analysis

Top Keywords

fragaria vesca
8
smear layer
8
scanning electron
8
vesca extract
4
extract smear
4
layer removal
4
removal scanning
4
electron microscopic
4
microscopic evaluation
4
evaluation introduction
4

Similar Publications

FvPHR1 Improves the Quality of Woodland Strawberry Fruit by Up-Regulating the Expression of FvPHT1;7 and FvSWEET9.

Plant Cell Environ

January 2025

Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning province, China.

Article Synopsis
  • Phosphorus is crucial for plant growth, but excessive fertilizer use can lead to environmental issues; plants manage phosphate supply through intricate signaling pathways.
  • The study focused on the role of PHR1 in Fragaria vesca (strawberries), showing that overexpressing the FvPHR1 gene enhances phosphate uptake and photosynthesis efficiency by activating specific downstream genes.
  • FvPHR1 also aids in sugar transport from leaves to fruit, suggesting its complex role in improving strawberry fruit quality and providing insights for developing better cultivars with efficient phosphorus utilization and higher sugar content.
View Article and Find Full Text PDF

Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.

View Article and Find Full Text PDF

Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.

View Article and Find Full Text PDF

Strawberries are valued globally for their nutritional, aesthetic, and economic benefits. Optimizing blue-to-red LED ratios and nitrogen levels is essential for sustainable indoor strawberry cultivation. This factorial study investigated the effects of blue and red LED combination ratios (L1; 1:3, L2; 1:4, and L3; 1:6) and nitrogen levels (N1; 100 and N2; 200 mg/L) on the physiology and performance of strawberries in a plant factory.

View Article and Find Full Text PDF

Background: Strawberry (Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!