Contamination with exogenous DNA is a constant hazard to ancient DNA studies, since their validity greatly depend on the ancient origin of the retrieved sequences. Since contamination occurs sporadically, it is fundamental to show positive evidence for the authenticity of ancient DNA sequences even when preventive measures to avoid contamination are implemented. Recently the presence of wheat in the United Kingdom 8000 years before the present has been reported based on an analysis of sedimentary ancient DNA (Smith et al. 2015). Smith et al. did not present any positive evidence for the authenticity of their results due to the small number of sequencing reads that were confidently assigned to wheat. We developed a computational method that compares postmortem damage patterns of a test dataset with bona fide ancient and modern DNA. We applied this test to the putative wheat DNA and find that these reads are most likely not of ancient origin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629168PMC
http://dx.doi.org/10.7554/eLife.10005DOI Listing

Publication Analysis

Top Keywords

ancient dna
16
presence wheat
8
8000 years
8
ancient origin
8
positive evidence
8
evidence authenticity
8
ancient
7
dna
7
contesting presence
4
wheat
4

Similar Publications

Progress on ancient DNA investigation of Late Quaternary mammals in China.

Yi Chuan

January 2025

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.

It has been more than 40 years since the beginning of exploring the genetic composition of ancient organisms from the perspective of ancient DNA. In the recent 20 years, with the development and application of high-throughput sequencing technology platforms and the improved efficiency of retrieving highly fragmented DNA molecules, ancient DNA research moved forward to a brand-new era of deep-time paleogenomics. It not only solved many controversial phylogenetic problems, enriched the migration and evolution details of various organisms including humans, but also launched exploration of the molecular responses to climate changes in terms of "whole genomic-big data-multi-species" level.

View Article and Find Full Text PDF

The northern part of Asia, including Siberia, the Mongolian Plateau, and northern China, is not only a crossroads for population exchange on the Eurasian continent but also an important bridge connecting the American continent. This region holds a unique and irreplaceable significance in exploring the origins of humanity, tracking human migration routes, and elucidating evolutionary mechanisms. Despite the limited number of samples unearthed, varying preservation conditions, and constraints of technical means, our understanding of the interactions among populations in northern Asia is still in its infancy.

View Article and Find Full Text PDF

Over the past decade, the continuous development of ancient genomic technology and research has significantly advanced our understanding of human history. Since 2017, large-scale studies of ancient human genomes in East Asia, particularly in China, have emerged, resulting in a wealth of ancient genomic data from various time periods and locations, which has provided new insights into the genetic history of East Asian populations over tens of thousands of years. Especially since 2022, there emerged a series of new research progresses in the genetic histories of the northern and southern Chinese populations within the past 10,000 years.

View Article and Find Full Text PDF

We investigate alternative strategies against reference bias and postmortem damage in low coverage paleogenomes. Compared to alignment to the linear reference genome, we show that masking known polymorphic sites and graph alignment effectively remove reference bias, but only starting from raw read files. We next study approaches to overcome postmortem damage: trimming, rescaling, and our newly developed algorithm, bamRefine (github.

View Article and Find Full Text PDF

The trait-specific timing of accelerated genomic change in the human lineage.

Cell Genom

January 2025

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Humans exhibit distinct characteristics compared to our primate and ancient hominin ancestors. To investigate genomic bursts in the evolution of these traits, we use two complementary approaches to examine enrichment among genome-wide association study loci spanning diseases and AI-based image-derived brain, heart, and skeletal tissue phenotypes with genomic regions reflecting four evolutionary divergence points. These regions cover epigenetic differences among humans and rhesus macaques, human accelerated regions (HARs), ancient selective sweeps, and Neanderthal-introgressed alleles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!