The Janzen-Connell hypothesis states that tree diversity in tropical forests is maintained by specialist predators that are distance- or density-responsive (i.e. predators that reduce seed or seedling survival near adults of their hosts). Many empirical studies have investigated whether predators are distance-responsive; however, few studies have examined whether distance-responsiveness matters for how predators maintain tree diversity. Using a site-occupancy model, we show analytically that distance-responsive predators are actually less able to maintain diversity than specialist predators that are not distance-responsive. Generally, specialist predators maintain diversity because they become rare when their host's densities are low, reducing predation risk. However, if predators are distance-responsive, and most seeds cannot disperse away from these predators, then seed predation rates will remain high, even if predator density is low across the landscape. Consequently, a reduction in a host's population density may not lead to a significant reduction in seed and seedling predation. We show that habitat partitioning can cause recruitment to be highest near conspecific adults, even in the presence of distance-responsive predators, without any change in the effect that the predators have on coexistence (a result contrary to predictions of the Janzen-Connell hypothesis). Rather, specialist predators and habitat partitioning have additive effects on species coexistence in our model, i.e., neither mechanism alters the effect of the other one.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tpb.2015.10.006 | DOI Listing |
Clin Pract Cases Emerg Med
November 2024
University of Nevada, Las Vegas, Kirk Kerkorian School of Medicine, Las Vegas, Nevada.
Case Presentation: A 32-year-old male with a history of left eye keratoconus presented to the emergency department with left eye pain and blurry vision for two days. Out of concern for corneal hydrops, ophthalmology was consulted, and the diagnosis was confirmed. Per ophthalmology recommendations, the patient was started on hypertonic saline and prednisolone eye drops and referred to a corneal specialist.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07, Uppsala, Sweden.
Subarctic lakes are sentinels of climate change, showing responses in their physical, chemical, and biological properties. However, climate-induced changes in invertebrate diversity and their underlying mechanisms are not fully understood. We explored the relationship between past climate change and taxonomic composition of subfossil cladocerans in a subarctic lake during the last ca.
View Article and Find Full Text PDFScience
December 2024
College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
Oecologia
December 2024
Department of Biology, University of Central Florida, Orlando, FL, USA.
Global change drivers such as habitat fragmentation, species invasion, and climate warming can act synergistically upon native systems; however, global change drivers can be neutralized if they induce antagonistic interactions in ecological communities. Deadwood comprises a considerable portion of forest carbon, and it functions as refuge, nesting habitat and nutrient source for plant, animal and microbial communities. We predicted that thermophilic termites would increase wood decomposition with experimental warming and in forest edge habitat.
View Article and Find Full Text PDFEnviron Microbiome
November 2024
GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany.
Background: Bacteriophages are known modulators of community composition and activity in environmental and host-associated microbiomes. However, the impact single phages have on bacterial community dynamics under viral predation, the extent and duration of their effect, are not completely understood. In this study, we combine morphological and genomic characterization of a novel marine phage, isolated from the Baltic sponge Halichondria panicea, and report on first attempts of controlled phage-manipulation of natural sponge-associated microbiomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!