Dipeptidyl peptidases (DPPs) are potent exopeptidases, which possess central role in proteolysis. As compared to other members of DPP family, proline containing dipeptide hydrolysing activity of DPP-II (Dipeptidyl peptidase II) is unique as it hydrolyses imino group and plays a key role in protein metabolism. In present study, DPP-II was purified from germinated moong bean seeds using acid and ammonium sulphate precipitation followed by successive chromatographies on gel filtration (pH 7.4) and cation exchanger (pH 5.9). Native PAGE and in-situ gel assay confirmed the apparent homogeneity. Purified plant DPP-II is an oligomeric enzyme with molecular weight of 97.3kDa. Highest DPP-II activity was observed at pH 7.5 and 37°C, with stability in the range of neutral to alkaline pH. Substrate specificity showed consequent activity for proline containing dipeptide followed by Lys-Ala and other hydrophobic dipeptides, but none of the studied endopeptidase and monopeptidase substrate was hydrolysed. Catalytic characterization with modifier studies revealed the involvement of Ser and His residues in its catalytic mechanism. Its dipeptidyl peptidase activity for proline containing dipeptide supported its role in the bioactive peptide generation and food industry. Functional studies of DPP-II revealed the significant involvement of this glycoproteinous enzyme in protein mobilization during germination. Further studies on industrial applications exploring physiological role are in progress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2015.10.004DOI Listing

Publication Analysis

Top Keywords

proline dipeptide
12
dipeptidyl peptidase
8
activity proline
8
revealed involvement
8
dpp-ii
5
purification biochemical
4
biochemical characterization
4
dipeptidyl
4
characterization dipeptidyl
4
dipeptidyl peptidase-ii
4

Similar Publications

OncoFAP is an ultrahigh affinity ligand of fibroblast activation protein (FAP), a tumor-associated antigen overexpressed in the stroma of the majority of solid tumors. OncoFAP has been previously implemented as a tumor-homing moiety for the development of small molecule drug conjugates (SMDCs). In the same context, the glycine--proline dipeptide was included with the aim to selectively undergo cleavage only in the presence of the target FAP, triggering the consequent release of the cytotoxic payload in the tumor microenvironment.

View Article and Find Full Text PDF

Unveiling the versatility of the thioredoxin framework: Insights from the structural examination of DsbA1.

Comput Struct Biotechnol J

December 2024

Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.

In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.

View Article and Find Full Text PDF

Biomolecular condensates provide a mechanism for compartmentalization of biomolecules in eukaryotic cells. These liquid-like condensates are formed via liquid-liquid phase separation, by a plethora of interactions, and can mediate several biological processes in healthy cells. Expansions of dipeptide repeat proteins, DPRs, in which arginine rich DPRs like poly-proline-arginine (PR), and poly-glycine-arginine (GR), partition RNA into condensates can however induce cell toxicity.

View Article and Find Full Text PDF

Industrial hemp (Cannabis sativa L.) is a multifaced crop that has the potential to be exploited for many industrial applications, and making use of salt lands is considered to be a sustainable development strategy for the hemp industry. However, no elite salt-tolerant hemp varieties have been developed, and therefore supplementing appropriate exogenous substances to saline soil is one possible solution.

View Article and Find Full Text PDF

Novel application of cyclo(-Phe-Pro) in mitigating aluminum toxicity through oxidative stress alleviation in wheat roots.

Environ Pollut

December 2024

MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Microbial secondary metabolites are crucial in plant-microorganism interactions, regulating plant growth and stress responses. In this study, we found that cyclo(-Phe-Pro), a proline-based cyclic dipeptide secreted by many microorganisms, alleviated aluminum toxicity in wheat roots by increasing root growth, decreasing callose deposition, and decreasing Al accumulation. Cyclo(-Phe-Pro) also significantly reduced Al-induced reactive oxygen species (ROS) with HO, O, and •OH levels decreasing by 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!