Low-dose rotenone exposure induces early senescence leading to late apoptotic signaling cascade in human trabecular meshwork (HTM) cell line: An in vitro glaucoma model.

Cell Biol Int

Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.

Published: January 2016

This study aimed to determine whether the prolonged exposure of the human trabecular meshwork (HTM) cell line to a low dose (1 nM) of rotenone could simulate a glaucomatous-like condition and serve as a cellular model for its etiological analysis. Under 1-nM rotenone exposure for 24-72 h, HTM cells showed a decrease in cell viability as assessed by an MTT assay and showed mitochondrial dysfunction as assessed by measuring H2 DCFDA fluorescence; a decrease in ATP level was also observed. Flow cytometric analysis showed an increase in cellular size and granularity. Elevated AF showed initial senescence. LF staining with SBB and its spectrofluorometric quantification confirmed growth arrest. An accumulation of cytoplasmic myocilin, IL-6, and MMP-9 at 72 h of exposure supported glaucomatous induction. TEM revealed morphological changes in mitochondria and nuclei of treated cells. Signaling cascades were assessed by immunoblotting and immunocytochemical analysis. This study showed a shift in status of the cells from initial senescence to induction of apoptosis in the HTM cell line due to continuous low-dose exposure to rotenone; however, at 72 h, both senescence and apoptotic features are apparent in these cells. This is the first report that reveals the potential of a prolonged low-dose exposure of rotenone to simulate senescence in the HTM cell line to cause a glaucomatous condition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.10561DOI Listing

Publication Analysis

Top Keywords

htm cell
16
rotenone exposure
8
human trabecular
8
trabecular meshwork
8
meshwork htm
8
rotenone simulate
8
initial senescence
8
low-dose exposure
8
exposure rotenone
8
exposure
6

Similar Publications

High-Efficiency (21.4%) Carbon Perovskite Solar Cells via Cathode Interface Engineering by using CuPc Hole-Transporting Layers.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.

View Article and Find Full Text PDF

Objective: Several studies have discussed the relationship between cholesterol and gallstones, and high-density lipoprotein cholesterol (HDL-C) as a representative of this has been addressed in various diseases. The metric neutrophil to high-density lipoprotein cholesterol ratio (NHR) derived from HDL-C has attracted much attention. The purpose of this article is to examine the relationship between NHR and gallstones in a population of American adults.

View Article and Find Full Text PDF

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Towards all inorganic antimony sulphide semitransparent solar cells.

Sci Rep

January 2025

Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.

NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.

View Article and Find Full Text PDF

Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!