Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown. Until recently, no selective agonists/antagonists were available; however, recently synthetic high-affinity agonists, chiral-diazepines nonpeptide-analogs (3F, 9D, 9F, 9G) with low CNS penetrance, were described, but are not well-categorized pharmacologically or in different labarotory species. The present study characterizes the affinities, potencies, selectivities of the chiral-diazepine BRS-3 agonists in human and rodents (mice,rat). In human BRS-3 receptors, the relative affinities of the chiral-diazepines was 9G>9D>9F>3F; each was selective for BRS-3. For stimulating PLC activity, in h-BRS-3 each of the four chiral diazepine analogs was fully efficacious and their relative potencies were: 9G (EC50: 9 nM)>9D (EC50: 9.4 nM)>9F (EC50: 39 nM)>3F (EC50: 48 nM). None of the four chiral diazepine analogs activated r,m,h-GRPR/NMBR. The nonpeptide agonists showed marked differences from each other and a peptide agonist in receptor-coupling-stiochiometry and in affinities/potencies in different species. These results demonstrate that chiral diazepine analogs (9G, 9D, 9F, 3F) have high/affinity/potency for the BRS-3 receptor in human and rodent cells, but different coupling-relationships and species differences from a peptide agonist.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461819 | PMC |
http://dx.doi.org/10.1016/j.peptides.2015.10.007 | DOI Listing |
Adv Sci (Weinh)
May 2024
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
The control of potato virus Y (PVY) induced crop failure is a challengeable issue in agricultural chemistry. Although many anti-PVY agents are designed to focus on the functionally important coat protein (CP) of virus, how these drugs act on CP to inactivate viral pathogenicity, remains largely unknown. Herein, a PVY CP inhibitor -3j (S) is disclosed, which is accessed by developing unusually efficient (up to 99% yield) and chemo-selective (> 99:1 er in most cases) carbene-catalyzed [3+4] cycloaddition reactions.
View Article and Find Full Text PDFOrg Lett
March 2024
Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
This study demonstrates a highly efficient regiodivergent ligand-controlled palladium-catalyzed cycloaddition reaction of vinyloxazolidine-2,4-diones with 1,3,5-triazinanes. In the presence of a diphosphine ligand, the reaction proceeds via a (5+2) cycloaddition pathway to afford 1,3-diazepin-4-ones in excellent yields, while using a monophosphine ligand, the reaction proceeds smoothly via a (3+2) cycloaddition pathway to give imidazolidin-4-ones in good yields.
View Article and Find Full Text PDFJ Chromatogr A
June 2021
SapienzaUniversità di Roma, Dipartimento di Chimica e Tecnologie del Farmaco, P.le A. Moro 5, 00185Rome, Italy. Electronic address:
The toolbox of medicinal chemists includes the 1,4-benzodiazepine scaffold as a "privileged scaffold" in drug discovery. Several biologically active small molecules containing a 1,4-benzodiazepine scaffold have been approved by the FDA for the treatment of various diseases, with most of them being used for their psychotropic effects. The therapeutic potential of 1,4-benzodiazepines has stimulated the interest of synthetic chemists in developing new synthetic strategies to a range of substituted analogues for biological evaluation.
View Article and Find Full Text PDFOrg Process Res Dev
August 2020
Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States.
We report an improved and scalable synthesis of MIDD0301, a positive GABA receptor modulator that is under development as oral and inhaled treatments for asthma. In contrast to other benzodiazepines in clinical use, MIDD0301 is a chiral compound that has limited brain absorption. The starting material to generate MIDD0301 is 2-amino-5-bromo-2'-fluorobenzophenone, which has a non-basic nitrogen due to electron withdrawing substituents in the and positions, reducing its reactivity towards activated carboxylic acids.
View Article and Find Full Text PDFOrg Biomol Chem
May 2019
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences, Beijing 100190, P. R. China. and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
A small library of tunable chiral pyridine-aminophosphine ligands were enantioselectively synthesized based on chiral 2-(pyridin-2-yl)-substituted 1,2,3,4-tetrahydroquinoline scaffolds, which were obtained in high yields and with excellent enantioselectivities via ruthenium-catalyzed asymmetric hydrogenation of 2-(pyridin-2-yl)quinolines. The protocol features a wide substrate scope and mild reaction conditions, enabling scalable synthesis. These chiral P,N ligands were successfully applied in the Ir-catalyzed asymmetric hydrogenation of benchmark olefins and challenging seven-membered cyclic imines including benzazepines and benzodiazepines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!