Nanoscale and mechanical properties of the physiological cell-ECM microenvironment.

Exp Cell Res

Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany; Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69047, Germany. Electronic address:

Published: April 2016

Studying biological processes in vitro requires faithful and successful reconstitution of the in vivo extracellular matrix (ECM) microenvironment. However, the physiological basis behind in vitro studies is often forgotten or ignored. A number of diverse cell-ECM interactions have been characterized throughout the body and in disease, reflecting the heterogeneous nature of cell niches. Recently, a greater emphasis has been placed on characterizing both the chemical and physical characteristics of the ECM and subsequently mimicking these properties in the lab. Herein, we describe physiological measurement techniques and reported values for the three main physical aspects of the ECM: tissue stiffness, topography, and ligand presentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2015.10.037DOI Listing

Publication Analysis

Top Keywords

nanoscale mechanical
4
mechanical properties
4
properties physiological
4
physiological cell-ecm
4
cell-ecm microenvironment
4
microenvironment studying
4
studying biological
4
biological processes
4
processes vitro
4
vitro requires
4

Similar Publications

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Electrocatalytic reduction of CO (eCORR) into valuable multi-carbon (C) products is an effective strategy for combating climate change and mitigating energy crises. The high-energy density and diverse applications of C products have attracted considerable interest. However, the complexity of the reaction pathways and the high energy barriers to C-C coupling lead to lower selectivity and faradaic efficiency for C products than for C products.

View Article and Find Full Text PDF

In this study, dye/polymer matrix-stabilized β-FeOOH nanomaterials were fabricated for therapeutic applications. Rh-B/F127@β-FeOOH nanomaterials were synthesized using two different methods: co-precipitation (CoP) and hydrothermal (HT) methods. The as-synthesized nanoparticles were characterized using various spectroscopic techniques, including FT-IR, UV-Vis, PL, XRD, HR-TEM, and XPS analysis.

View Article and Find Full Text PDF

Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.

View Article and Find Full Text PDF

Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!