Objective: Cell injury releases nucleic acids supporting inflammation and stem cell activation. Here, the impact of extracellular ribonucleic acid, especially transfer RNA (ex-tRNA), on vasculogenesis and leukopoiesis of mouse embryonic stem (ES) cells was investigated.

Approach And Results: ex-tRNA, whole cell RNA and ribosomal RNA (ex-rRNA) but not DNA increased CD31-positive vascular structures in embryoid bodies. Ex-tRNA and ex-rRNA increased numbers of VEGFR2(+), CD31(+) and VE-cadherin(+) vascular cells as well as CD18(+), CD45(+) and CD68(+) cells, indicating leukocyte/macrophage differentiation. This was paralleled by mRNA and protein expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor-165 (VEGF165) and neuropilin 1 (NRP1), phosphorylation of phosphatidyl inositol 3-kinase (PI3K) and VEGF receptor 2 (VEGFR2) as well as mRNA expression of α-smooth muscle actin (α-SMA). ex-tRNA was taken up by endosomes, increased expression of the pro-angiogenic semaphorin B4 receptor plexin B1 as well as the ephrin-type B receptor 4 (EphB4) and ephrinB2 ligand and enhanced cell migration, which was inhibited by the VEGFR2 antagonist SU5614 and the PI3K inhibitor LY294002. This likewise abolished the effects of ex-tRNA on vasculogenesis and leukopoiesis of ES cells. Ex-tRNA increased NOX1, NOX2, NOX4 and DUOX2 mRNA and boosted the generation of superoxide and hydrogen peroxide which was inhibited by radical scavengers, the NADPH oxidase inhibitors apocynin, VAS2870, ML171, and plumbagin as well as shRNA silencing of NOX1 and NOX4.

Conclusions: Our findings indicate that ex-tRNA treatment induces vasculogenesis and leukopoiesis of ES cells via superoxide/hydrogen peroxide generated by NADPH oxidase and activation of VEGFR2 and PI3K.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.423DOI Listing

Publication Analysis

Top Keywords

vasculogenesis leukopoiesis
16
embryonic stem
8
stem cells
8
transfer rna
8
rna ribosomal
8
ribosomal rna
8
ex-trna vasculogenesis
8
leukopoiesis cells
8
nadph oxidase
8
ex-trna
7

Similar Publications

The milk thistle compound Silibinin (i.e., a 1:1 mixture of Silybin A and Silybin B) stimulates vasculogenesis of mouse embryonic stem (ES) cells.

View Article and Find Full Text PDF

Identification of a new regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis.

FASEB J

January 2018

Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China;

A genomic variant in the human [androgen-dependent tissue factor (TF) pathway inhibitor (TFPI) regulating protein] gene increases the risk of coronary artery disease, the leading cause of death worldwide. TFPI is the TF pathway inhibitor that is involved in coagulation. Here, we report that and form a regulatory axis that specifies primitive myelopoiesis and definitive hematopoiesis, but not primitive erythropoiesis or vasculogenesis.

View Article and Find Full Text PDF

Pias1 is essential for erythroid and vascular development in the mouse embryo.

Dev Biol

July 2016

Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:

The protein inhibitor of activated STAT-1 (PIAS1) is one of the few known SUMO E3 ligases. PIAS1 has been implicated in several biological processes including repression of innate immunity and DNA repair. However, PIAS1 function during development and tissue differentiation has not been studied.

View Article and Find Full Text PDF

Objective: Cell injury releases nucleic acids supporting inflammation and stem cell activation. Here, the impact of extracellular ribonucleic acid, especially transfer RNA (ex-tRNA), on vasculogenesis and leukopoiesis of mouse embryonic stem (ES) cells was investigated.

Approach And Results: ex-tRNA, whole cell RNA and ribosomal RNA (ex-rRNA) but not DNA increased CD31-positive vascular structures in embryoid bodies.

View Article and Find Full Text PDF

Neutrophilic granulocytes are the most abundant type of myeloid cells and form an essential part of the innate immune system. In vertebrates the first neutrophils are thought to originate during primitive hematopoiesis, which precedes hematopoietic stem cell formation. In zebrafish embryos, it has been suggested that primitive neutrophils may originate in two distinct sites, the anterior (ALPM) and posterior lateral plate mesoderm (PLPM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!