A miniature closed-circle flow cell for high photon flux X-ray scattering experiments.

J Synchrotron Radiat

ESRF - The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France.

Published: November 2015

AI Article Synopsis

  • A new miniature flow cell design allows for high X-ray photon flux experiments on sensitive liquids.
  • The cell uses a magnetic stir bar to create flow, making it effective for handling precious or hazardous liquids like concentrated acids.
  • Demonstration data from X-ray Raman scattering spectroscopy shows the cell's ability to analyze the oxygen K-edge in liquid water at normal conditions.

Article Abstract

A closed-circle miniature flow cell for high X-ray photon flux experiments on radiation-sensitive liquid samples is presented. The compact cell is made from highly inert material and the flow is induced by a rotating magnetic stir bar, which acts as a centrifugal pump inside the cell. The cell is ideal for radiation-sensitive yet precious or hazardous liquid samples, such as concentrated acids or bases. As a demonstration of the cell's capabilities, X-ray Raman scattering spectroscopy data on the oxygen K-edge of liquid water under ambient conditions are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S1600577515016331DOI Listing

Publication Analysis

Top Keywords

flow cell
8
cell high
8
photon flux
8
liquid samples
8
cell
5
miniature closed-circle
4
closed-circle flow
4
high photon
4
flux x-ray
4
x-ray scattering
4

Similar Publications

Protocol for evaluating the activity of R2 retrotransposons in mammalian cells.

STAR Protoc

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. Electronic address:

R2 retrotransposons can be harnessed to insert genes at targeted sites by all-RNA delivery, presenting a new technology for next-generation biotherapeutics. Here, we report a protocol for evaluating the gene integration activity of R2 retrotransposons in mammalian cells. We describe the construction of vectors separately expressing R2 protein and donor, the process of liposome transfection, and flow cytometry.

View Article and Find Full Text PDF

The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.

View Article and Find Full Text PDF

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Despite significant advancements in achieving high recanalization rates (80%-90%) for large vessel occlusions through mechanical thrombectomy, the issue of "futile recanalization" remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!