Objective: To investigate the effect of Emodin combined with 3'-azido-3'-deoxythymidine (AZT) on the proliferation and apoptosis of concentrated leukemia stem cells (CLSC)-human acute myeloid leukemia KG-la cells and expression of BCL-2, NF-κB and TGF-β.

Methods: The tumor stem cell-like subpopulation in human leukemia cell line KG-1a was enriched with 5-fluorouracil (5-FU). The CD34⁺ CD38⁻ subpopulation in the KG-1a cells was detected with flow cytometry, the cell proliferation was detected by MTT method to study the of Emodin and AZT in the CLSC. The cell apoptosis was analyzed by flow cytometry. The expression of NF-κB, BCL-2 and TGF-β mRNA and proteins were measured with RT-PCR and Western blot respectively.

Results: As compared with cells treated with mentioned above drugs alone, the inhibition of proliferation potential and apoptosis rate of cells in combination group markedly increase with time and concentration dependent member (P < 0.01), the expression of NF-κB, BCL-2 and TGF-β mRNA and proteins decreased.

Conclusion: Emodin combined AZT can synergistically inhibit the proliferation, induce cell apoptosis, and down regulate the expression of NF-κB, BCL-2 and TGF-β mRNA and proteins in the CLSC, the possible mechanism of synergistic effect may be associated with inhibiton of BCL-2 activation and down-regulation of the expression of NF-κB, and TGF-β.

Download full-text PDF

Source
http://dx.doi.org/10.7534/j.issn.1009-2137.2015.05.008DOI Listing

Publication Analysis

Top Keywords

expression nf-κb
16
emodin combined
12
nf-κb bcl-2
12
bcl-2 tgf-β
12
tgf-β mrna
12
mrna proteins
12
combined azt
8
azt proliferation
8
expression bcl-2
8
bcl-2 nf-κb
8

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!