In an effort to develop α-adrenoceptor antagonists with antiarrhythmic activity, we designed a series of pyrrolidin-2-one derivatives. The α1- and α2-adrenorecepor affinities of the new pyrrolidin-2-one derivatives were determined using a radioligand binding assay. The most active compound was then tested in vitro for intrinsic activity toward α(1A)- and α(1B)-adrenoceptors and in vitro for antiarrhythmic activity in epinephrine-induced arrhythmia in rats. The highest affinity for the α1-adrenoceptor (pK(i) = 7.01) was displayed by 1-{4-[4-(2-methoxy-5-chlorophenyl)-piperazin-1-yl]-methyl}-pyrrolidin-2-one (9). 1-[4-(2-Fluorophenyl)-piperazin-1-yl]-methyl-pyrrolidin-2-one (7) showed the highest affinity toward the α2-adrenoceptor (pK(i) = 6.52). Intrinsic activity studies of compound 9 showed that this compound is an antagonist of both α(1A)- (EC50 = 0.5 nM) and α(1B)- (EC50 = 51.0 nM) adrenoceptors. Compound 9 displayed antiarrhythmic activity in rats (ED50 = 5.0 mg/kg (3.13-7.99)). New derivatives of pyrrolidin-2-one with α1 -adrenoceptor affinity were identified. We propose that the antiarrhythmic activity of compound 9 is related to its antagonism of α(1A)- and α(1B)-adrenoceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201500180DOI Listing

Publication Analysis

Top Keywords

antiarrhythmic activity
16
derivatives pyrrolidin-2-one
8
pyrrolidin-2-one derivatives
8
intrinsic activity
8
α1a- α1b-adrenoceptors
8
highest affinity
8
activity
6
antiarrhythmic
5
compound
5
antiarrhythmic α-adrenoceptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!