High Performance Carbon Nanotube Yarn Supercapacitors with a Surface-Oxidized Copper Current Collector.

ACS Appl Mater Interfaces

CSIRO Manufacturing , P. O. Box 21, Belmont, Victoria 3216, Australia.

Published: November 2015

Threadlike linear supercapacitors have demonstrated high potential for constructing fabrics to power electronic textiles (eTextiles). To improve the cyclic electrochemical performance and to produce power fabrics large enough for practical applications, a current collector has been introduced into the linear supercapcitors to transport charges produced by active materials along the length of the supercapacitor with high efficiency. Here, we first screened six candidate metal filaments (Pt, Au, Ag, AuAg, PtCu, and Cu) as current collectors for carbon nanotube (CNT) yarn-based linear supercapacitors. Although all of the metal filaments significantly improved the electrochemical performance of the linear supercapacitor, two supercapacitors constructed from Cu and PtCu filaments, respectively, demonstrate far better electrochemical performance than the other four supercapacitors. Further investigation shows that the surfaces of the two Cu-containing filaments are oxidized by the surrounding polymer electrolyte in the electrode. While the unoxidized core of the Cu-containing filaments remains highly conductive and functions as a current collector, the resulting CuO on the surface is an electrochemically active material. The linear supercapacitor architecture incorporating dual active materials CNT + Cu extends the potential window from 1.0 to 1.4 V, leading to significant improvement to the energy density and power density.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b08110DOI Listing

Publication Analysis

Top Keywords

current collector
12
electrochemical performance
12
carbon nanotube
8
linear supercapacitors
8
active materials
8
metal filaments
8
linear supercapacitor
8
cu-containing filaments
8
supercapacitors
5
linear
5

Similar Publications

Aqueous zinc-ion batteries are an appealing electrochemical energy storage solution due to their affordability and safety. Significant attention has been focused on vanadium oxide cathode materials for ZIBs, owing to their high specific capacity, unique layered or tunnel structures, and low cost. Compared to traditional methods for preparing and assembling electrode materials, direct current (DC) magnetron sputtering allows direct synthesis and uniform deposition on current collectors, offering advantages such as simplicity, mild reaction conditions, and strong film adhesion.

View Article and Find Full Text PDF

Optimizing LiNO Conversion through a Defective Carbon Matrix as Catalytic Current Collectors for Highly Durable and Fast-Charging Li Metal Batteries.

Nano Lett

January 2025

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Lithium nitrate (LiNO) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a LiN-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal-organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO conversion kinetics and boost LiN generation inside the SEI.

View Article and Find Full Text PDF

High-performance liquid chromatography (HPLC) is an invaluable technique that has been used for many decades for the separation of various molecules. The reproducible collection of eluates from these systems has been significantly improved via its automation by fraction collection systems. Current commercially available fraction collectors are not easily customizable, incompatible with other platforms, and come with a large cost barrier making them inaccessible to many researchers.

View Article and Find Full Text PDF

Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.

View Article and Find Full Text PDF

Realizing an Energy-Dense Potassium Metal Battery at -40 °C via an Integrated Anode-Free and Dual-Ion Strategy.

J Am Chem Soc

January 2025

School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.

Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!