In this study we compare the electrochemical and structural properties of three gold salts AuCl, AuCN and KAu(CN)2 in a Deep Eutectic Solvent (DES) electrolyte (Ethaline 200) in order to elucidate factors affecting the galvanic deposition of gold coatings on nickel substrates. A chemically reversible diffusion limited response was observed for AuCl, whereas AuCN and KAu(CN)2 showed much more complicated, kinetically limited responses. Galvanic exchange reactions were performed on nickel substrates from DES solutions of the three gold salts; the AuCN gave a bright gold coating, the KAu(CN)2 solution give a visibly thin coating, whilst the coating from AuCl was dull, friable and poorly adhesive. This behaviour was rationalised by the differing speciation for each of these compounds, as evidenced by EXAFS methods. Analysis of EXAFS data shows that AuCl forms the chlorido-complex [AuCl2](-), AuCN forms a mixed [AuCl(CN)](-) species, whereas KAu(CN)2 maintains its [Au(CN)2](-) structure. The more labile Cl(-) enables easier reduction of Au when compared to the tightly bound cyanide species, hence leading to slower kinetics of deposition and differing electrochemical behaviour. We conclude that metal speciation in DESs is a function of the initial metal salt and that this has a strong influence on the mechanism and rate of growth, as well as on the morphology of the metal deposit obtained. In addition, these coatings are also extremely promising from a technological perspective as Electroless Nickel Immersion Gold (ENIG) finishes in the printed circuit board (PCB) industry, where the elimination of acid in gold plating formulation could potentially lead to more reliable coatings. Consequently, these results are both significant and timely.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp05748e | DOI Listing |
J Phys Chem B
January 2025
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Structural, thermal, and dynamic properties of four deep eutectic solvents comprising choline chloride paired with phenolic derivative hydrogen-bond donors were probed using experiments and molecular simulations. The hydrogen-bond donors include phenol, catechol, -chlorophenol, and o-cresol, in a 3:1 mixture with the hydrogen-bond acceptor choline chloride. Density, viscosity, and pulsed-field gradient NMR diffusivity measurements were conducted over a range of temperatures.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
Chem Asian J
January 2025
Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, school of chemistry and chemical engineering, Shanda nan Road 27, 250100, Jinan, CHINA.
Converting 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) via electrooxidation is a sustainable approach for generating high-value chemicals from biomass. This study presents Mn-doped Ni(OH)2 nanosheets as an effective electrocatalyst for HMF electrooxidation. The Mn-doped Ni(OH)2 nanosheets were synthesized through a microwave-assisted deep eutectic solvent (DES) strategy, followed by an alkaline reflux process.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Environment Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
We report a facile fractionation strategy using choline hydroxide (ChOH) based alkaline deep eutectic solvents (DES) for whole-component upgrading of bagasse. Through selective lignin and xylan dissolution, along with extensive biomass swelling, high-value lignin-carbohydrate complexes (LCC, with high β-O-4 bond content of 68.9/100 Ar) and high-purity xylan were extracted without compromising cellulose recovery and hydrolysis.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!