Background: The moth orchid (Phalaenopsis species) is an ornamental crop that is highly commercialized worldwide. Over 30,000 cultivars of moth orchids have been registered at the Royal Horticultural Society (RHS). These cultivars were obtained by artificial pollination of interspecific hybridization. Therefore, the identification of different cultivars is highly important in the worldwide market.

Methods/results: We used Illumina sequencing technology to analyze an important species for breeding, Phalaenopsis aphrodite subsp. formosana and develop the expressed sequence tag (EST)-simple sequence repeat (SSR) markers. After de novo assembly, the obtained sequence covered 29.1 Mb, approximately 2.2% of the P. aphrodite subsp. formosana genome (1,300 Mb), and a total of 1,439 EST-SSR loci were detected. SSR occurs in the exon region, including the 5' untranslated region (UTR), coding region (CDS), and 3'UTR, on average every 20.22 kb. The di- and tri-nucleotide motifs (51.49% and 35.23%, respectively) were the two most frequent motifs in the P. aphrodite subsp. formosana. To validate the developed EST-SSR loci and to evaluate the transferability to the genus Phalaenopsis, thirty tri-nucleotide motifs of the EST-SSR loci were randomly selected to design EST-SSR primers and to evaluate the polymorphism and transferability across 22 native Phalaenopsis species that are usually used as parents for moth orchid breeding. Of the 30 EST-SSR loci, ten polymorphic and transferable SSR loci across the 22 native taxa can be obtained. The validated EST-SSR markers were further proven to discriminate 12 closely related Phalaenopsis cultivars. The results show that it is not difficult to obtain universal SSR markers by transcriptome deep sequencing in Phalaenopsis species.

Conclusions: This study supported that transcriptome analysis based on deep sequencing is a powerful tool to develop SSR loci in non-model species. A large number of EST-SSR loci can be isolated, and about 33.33% EST-SSR loci are universal markers across the Phalaenopsis breeding germplasm after preliminary validation. The potential universal EST-SSR markers are highly valuable for identifying all of Phalaenopsis cultivars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629892PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141761PLOS

Publication Analysis

Top Keywords

est-ssr loci
24
moth orchid
12
aphrodite subsp
12
subsp formosana
12
phalaenopsis
9
est-ssr
9
genus phalaenopsis
8
phalaenopsis species
8
ssr markers
8
loci
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!