This paper reports our effort to develop a comprehensive HPLC-MS(n)-based dereplication strategy for phorbol ester (PE), deoxyphorbol ester (dPE) and ingenol ester (IE) profiling in plant extracts. This strategy is composed of two sequential analysis exploiting specific hybrid triple quadrupole/linear ion trap instrument modes. A first run was performed using a multiple reaction monitoring (MRM) mode targeting fragmentation of PE and dPE/IE coupled with the acquisition of MS(2) spectrum for the ions at m/z 311 and m/z 313, respectively. A second run was then completed based on precursor ion scan mode (PIS) and automatic MS(2) acquisition for each quasimolecular ion. The developed approach was used to investigate ten Euphorbia extracts showing bioactivity against chikungunya virus replication. Experiments allowed partial annotation of three dPE/IE but no PE was detected. Results suggested that other types of diterpene esters displayed PE- and dPE/IE-like fragmentations. The study of jatrophane ester (JE) standards by CID fragmentation using low and high resolution mass spectrometry confirmed this hypothesis, highlighting challenges and difficulties of diterpene esters profiling within plant extracts. Nonetheless, the present LC-MS(n) method can be easily adapted to profile other types of diterpene esters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2015.09.092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!