Objective: To explore the function and mechanism of microRNA-155 to regulate the angiogenesis after the cerebral infarction of rats through the angiotensin II receptor 1 (AT1R)/vascular endothelial growth factor (VEGF) signaling pathway.

Methods: Female SD rats were chosen for the construction of cerebral infarction model of rats using the modified right middle cerebral artery occlusion. The real-time PCR (RT-PCR) method was employed to detect the expression of microRNA-155 in each group at different time points after the cerebral infarction (1 h, l d, 3 d and 7 d). SD rats were randomly divided into four groups (n = 20 rats): sham operation group (Sham group), MACO group, MACO+microRNA-155 mimic group, and MACO+microRNA-155 inhibitor group. Sham group was given the free graft, while MACO+microRNA-155 mimic group and MACO+microRNA-155 inhibitor group were treated with microRNA-155 mimic and microRNA-155 inhibitor respectively. The Zea Longa 5-point scale was used to score the neurologic impairment of rats in each group; 2, 3, 5-triphenyl tetrazolium chloride staining to evaluate the volume of cerebral infarction of rats in each group; the immunohistochemistry to detect the expression of CD31; Western blot and RT-PCR to detect the expression of AT1R and VEGF receptor 2 (VEGFR2).

Results: The expression of microRNA-155 was increased in the cerebral ischemia tissue after the cerebral infarction. It was significantly increased at 1 d of ischemia and maintained at the high level for a long time. Rats in the Sham group had no symptom of neurologic impairment, while rats in the MACO group had the obvious neurologic impairment. After being treated with microRNA-155 inhibitor, the neural function of MACO rats had been improved, with the decreased area of cerebral infarction. But after being treated with microRNA-155 mimic, the neural function was further worsened, with the increased area of cerebral infarction. Results of immunohistochemical assay indicated that microRNA-155 inhibitor could up-regulate the expression of CD31, while microRNA-155 mimic could down-regulate the expression of CD31. The RT-PCR found that, after being treated with microRNA-155 inhibitor, MACO rats had the increased expression of AT1R and VEGFR2 messenger RNA (mRNA); but after being treated with microRNA-155 mimic, the expression of AT1R and VEGFR2 mRNA was decreased. Results of Western blot showed that, after being treated with microRNA-155 inhibitor, MACO rats had the increased expression of AT1R and VEGFR2 mRNA; but after being treated with microRNA-155 mimic, the expression of AT1R and VEGFR2 mRNA was decreased.

Conclusions: The inhibition of microRNA-155 can improve the neurologic impairment of rats with the cerebral infarction, reduce the volume of cerebral infarction and effectively promote the angiogenesis in the region of ischemia, which may be mediated through AT1R/VEGFR2 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apjtm.2015.09.009DOI Listing

Publication Analysis

Top Keywords

cerebral infarction
40
treated microrna-155
28
microrna-155 mimic
20
microrna-155 inhibitor
20
expression at1r
20
neurologic impairment
16
at1r vegfr2
16
microrna-155
15
rats
14
group
13

Similar Publications

We report a case in which mechanical thrombectomy (MT) was performed on a patient with cerebral infarction and renal failure, and contrast leakage remained on postoperative head computed tomography (CT) scans for more than 24 hours. A 75-year-old woman with a medical history of chronic renal failure due to diabetic nephropathy was admitted to the cardiology department of our hospital with chronic heart failure. During hospitalization, her diabetic nephropathy worsened.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) triggers immune responses and neuroinflammation, contributing to brain injury. Histone lactylation, a metabolic stress-related histone modification, plays a critical role in various diseases, but its involvement in cerebral ischemia remains unclear. This study utilized a transient middle cerebral artery occlusion/reperfusion (MCAO/R) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) model to investigate the role of microglial histone lactylation in ischemia-reperfusion injury.

View Article and Find Full Text PDF

Objectives: To explore the neuroprotective mechanism of electroacupuncture at the acupoints and in rats with cerebral ischemia-reperfusion (IR) injury.

Methods: Forty-eight male SD rats were equally randomized into sham operation group, cerebral IR model group, acupoint electroacupuncture group and non-acupoint acupuncture group. In the latter 3 groups, cerebral focal ischemic injury was induced using the Longa method; in the two electroacupuncture groups, electroacupuncture was performed either at the acupoints and or at non-acupoint sites for 7 days.

View Article and Find Full Text PDF

Unlabelled: The emergency destruction of the 4th reactor of the Chornobyl nuclear power plant necessitated large-scale emergency work, which involved large contingents of specialists. Analysis the mortality of Chornobyl clean-up workers isan important and relevant basis for planning medical protection measures in conditions of a potential threat ofemergency and other radiation situations.The objective of this work is to determine the levels and relative risks of mortality of Chornobyl clean-up workers in1986-1987 years from major non-tumor diseases depending on the received dose of radiation exposure, taking intoaccount age and time after the accident (period of epidemiological studies 1988-2021).

View Article and Find Full Text PDF

Background And Aim: This study aimed to develop a predictive model for early neurological deterioration (END) in branch atheromatous disease (BAD) affecting the lenticulostriate artery (LSA) territory using machine learning. Additionally, it aimed to explore the underlying mechanisms of END occurrence in this context.

Methods: We conducted a retrospective analysis of consecutive ischemic stroke patients with BAD in the LSA territory admitted to Dongyang People's Hospital from January 1, 2018, to September 30, 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!