The mechanism regulating the utilization of intramuscular triacylglycerol (IMTG) during high-intensity interval training (HIIT) and post-exercise recovery period remains elusive. In this study, the acute and long-term effects of HIIT on transforming growth factor beta 1 (TGF-β1) abundance in rat skeletal muscle and role of lactate and TGF-β1 in IMTG lipolysis during post-exercise recovery period were examined. TGF-β1 and Adipose triacylglycerol lipase (ATGL) abundance as well as total lipase activity in the gastrocnemius muscle significantly increased to a maximum value 10 h after acute bout of HIIT. Inhibition of TGF-β1 signaling by intramuscular injection of SB431542 30 min prior to the acute exercise attenuated ATGL abundance and total lipase activity in the gastrocnemius muscle in response to acute exercise. Intramuscular acute injection of lactate increased TGF-β1 and ATGL abundance in the gastrocnemius muscle and there were a significant increase in Muscle TGF-β1 and ATGL abundance after 5 weeks of HIIT/lactate treatment. These results indicate that exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-β1 mediated pathways during post-exercise recovery from strenuous exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2015.10.024 | DOI Listing |
Int J Biol Macromol
December 2024
Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao, China. Electronic address:
Fucosylated chondroitin sulfate from Pearsonothuria graeffei (FCS-Pg), a natural macromolecular polysaccharide, has been proven to prevent obesity, but its underlying molecular mechanism is still unclear. C57BL/6 J mice fed on high fat diet (HFD) were administered FCS-Pg lasting for ten weeks. The results demonstrated that FCS-Pg supplementation reduced body weight with dosage manner compared with HFD group.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
Sirtuin 1 (SIRT1) is a key upstream regulator of lipid metabolism; however, the molecular mechanisms by which SIRT1 regulates milk fat synthesis in dairy goats remain unclear. This study aimed to investigate the regulatory roles of SIRT1 in modulating lipid metabolism in goat mammary epithelial cells (GMECs) and its impact on the adipose triglyceride lipase (ATGL) promoter activity using RNA interference (RNAi) and gene overexpression techniques. The results showed that SIRT1 is significantly upregulated during lactation compared to the dry period.
View Article and Find Full Text PDFAutophagy
September 2024
Department of Biology, University of Fribourg, Fribourg, Switzerland.
Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require protein synthesis.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark.
In adipose tissue, reduced expression of the glycerol channel aquaporin 7 (AQP7) has been associated with increased accumulation of triglyceride. The present study determines the relative protein abundances of lipolytic enzymes, AQP7, and cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in paired mesenteric and omental visceral adipose tissue (VAT) and abdominal and femoral subcutaneous adipose tissue (SAT) in women with either normal weight or upper-body obesity. No differences in the expression of hormone-sensitive lipase (HSL) or AQP7 were found between the two groups in the four depots.
View Article and Find Full Text PDFJ Food Sci
September 2024
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China.
Hyperlipidemia has been suggested to be associated with dysregulation of lipid metabolism and gut microbiota. The present study prepared microencapsulated rice bran (MRB) with high stability based on in situ rice bran oil embedding and investigated the effects of MRB on lipid metabolism and gut microbiota in hyperlipidemic mice induced by high-fat diet (HFD). Results showed that compared to HFD fed mice, lipid levels in serum and hepatic lipid accumulation were reduced in mice fed with MRB, which was potentially associated with the fact that MRB decreased the expression of genes related to lipogenesis (Srebp1c, Acc, Hmgcr, and Fas) and increased the expression of genes related to lipid catabolism (Hsl, Atgl) and oxidation (Acox, Cpt1, Ucp1) (p < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!