A Pilot Study to Assess Adenosine 5'-triphosphate Metabolism in Red Blood Cells as a Drug Target for Potential Cardiovascular Protection.

Cardiovasc Hematol Disord Drug Targets

College of Pharmacy and Department of Medicine, Dalhousie University, Halifax, NS, Canada B3H 4R2.

Published: October 2016

Objective: To study the effect of exercise preconditioning on adenosine 5'triphosphate (ATP) metabolism in red blood cells and cardiovascular protection against injury induced by isoproterenol in vivo.

Methods: Male Sprague Dawley rats (SDR) were each exercised on a treadmill for 15 minutes at 10 m/min and 10% grade (n = 7) (LowEx), or 14 m/min and 22% grade (n = 8) (VigEx). Two hours after the exercise, each rat received a single dose of isoproterenol (30 mg/kg) by subcutaneous (sc) injection. Two separate groups of SDR were used as control: One received no exercise (n = 10) (NoEx) and the other received no exercise and no isoproterenol (n = 11) (NoIso). Serial blood samples were collected over 5 hours for measurement of ATP and its catabolites by a validated HPLC. Hemodynamic recording was collected continuously for the duration of the experiment. Data were analysed using ANOVA and t-tests and difference considered significant at p < 0.05.

Results: Exercise pre-conditioning (both LowEx and VigEx) reduced mortality after isoproterenol from 50% to < 30% (p > 0.05). It attenuated the rebound in blood pressure significantly (p < 0.05 between NoEx vs VigEx), attenuated the increase of RBC adenosine 5'-monophosphate (AMP) concentrations induced by isoproterenol, and also decreased the breakdown of ATP to AMP in the RBC (p < 0.05 vs NoEx).

Conclusion: Exercise pre-conditioning decreased the blood pressure rebound and also breakdown of ATP in RBC after isoproterenol which may be exploited further as a drug target for cardiovascular protection and prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997928PMC
http://dx.doi.org/10.2174/1871529x15666151102102702DOI Listing

Publication Analysis

Top Keywords

cardiovascular protection
12
metabolism red
8
red blood
8
blood cells
8
drug target
8
induced isoproterenol
8
received exercise
8
exercise pre-conditioning
8
blood pressure
8
breakdown atp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!