IL-1beta mediates MMP secretion and IL-1beta neosynthesis via upregulation of p22(phox) and NOX4 activity in human articular chondrocytes.

Osteoarthritis Cartilage

Université Joseph Fourier, GREPI AGIM FRE 3405 CNRS, Grenoble, France; Département de biologie et pathologie, Centre hospitalier Universitaire, Grenoble, France. Electronic address:

Published: November 2015

Objectives: Osteoarthritis (OA) is characterized by a progressive alteration of the biochemical properties of the articular cartilage. Inflammation plays a major role in OA, particularly through the cytokine Interleukine-1β, promoting reactive oxygen species (ROS) generation and matrix metalloproteinases (MMP) synthesis by the chondrocytes, orchestrating matrix proteolysis. NADPH oxidases (NOX) are membrane enzymes dedicated to the production of ROS. Role of oxidative stress is well established in OA; however, contribution of NOX in this process is still poorly documented. In this study, we addressed the role of NOX in primary human articular chondrocytes (HAC) upon inflammatory conditions--namely IL-1β and OA.

Design: HAC were collected from patients undergoing hip surgery. Chondrocytes were treated with IL-1β and NOX inhibitors Diphenylene Iodonium, GKT136901, Tiron and Heme oxygenase-1 before MMP expression and NOX activity assessment. Finally, NOX4 expression was compared between OA and non OA parts of hip cartilage (n = 14).

Results: This study establishes for the first time in human that NOX4 is the main NOX isoform expressed in chondrocytes. We found a significant upregulation of NOX4 mRNA in OA chondrocytes. Expression of NOX4/p22(phox) as well as ROS production is enhanced by IL-1β. On the other hand, the use of NOX4 inhibitors decreased IL-1β-induced collagenase synthesis by chondrocytes. Moreover, our study support the existence of a redox dependant loop sustaining pro-catabolic pathways induced by IL-1β.

Conclusions: This study points out NOX4 as a new putative target in OA and suggests that NOX-targeted therapies could be of interest for the causal treatment of the pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2015.02.167DOI Listing

Publication Analysis

Top Keywords

human articular
8
articular chondrocytes
8
synthesis chondrocytes
8
chondrocytes
7
nox4
6
nox
6
il-1beta mediates
4
mediates mmp
4
mmp secretion
4
secretion il-1beta
4

Similar Publications

Stromal vascular fraction (SVF) is a heterogeneous collection of cells obtained from adipose tissue through lipoaspiration and is an alter-native intraarticular treatment option, especially in osteoarthritis (OA). The anti-inflammatory and extracellular tissue repair-stimulating properties of SVF increase its effectiveness in regeneration and repair mechanisms. One of the most common symptoms of hemophilia A and B is hemophilic arthropathy (HA).

View Article and Find Full Text PDF

The lower limb of Homo naledi presents a suite of primitive, derived and unique morphological features that pose interesting questions about the nature of bipedal movement in this species. The exceptional representation of all skeletal elements in H. naledi makes it an excellent candidate for biomechanical analysis of gait dynamics using modern kinematic software.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.

View Article and Find Full Text PDF

Transcriptomic Analysis and Experimental Verification of Ferroptosis Signature Genes in Osteoarthritis.

Int J Rheum Dis

January 2025

Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Minda Hospital of Hubei Minzu University, Enshi, China.

Osteoarthritis is a systemic disease that primarily damages articular cartilage and also affects the synovium, ligaments, and bone tissues. The key mechanisms involved are chondrocyte death and degradation of the extracellular matrix. This study aims to identify differentially expressed genes (DEGs) associated with ferroptosis and investigate their roles in the development of osteoarthritis.

View Article and Find Full Text PDF

Hydroxycitric acid reconstructs damaged articular cartilages by modifying the metabolic cascade in chondrogenic cells.

Osteoarthr Cartil Open

March 2025

Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.

Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!