Unlabelled: Itch and pain are unpleasant sensations that distress many patients with disease. However, most studies have focused on the neural mechanisms of pain, and much less effort has been devoted to itch. It has been reported that itch and pain might share a common pathway, and γ-aminobutyric acid type A (GABA(A)) receptors in the central nucleus of the amygdala (CeA) are involved in pain modulation. However, the contribution of GABAA receptors in the CeA to the modulation of itch remains poorly understood. Herein, we report that bilateral intra-CeA microinjection of a selective GABAA receptor agonist muscimol hydrochloride (Mus; 50 ng per side), but not a selective GABAA receptor antagonist bicuculline (Bic; 20 ng per side) or vehicle, showed significant analgesic effects, reflected by an increase in tail-flick latency and a decrease in allyl isothiocyanate (mustard oil)-evoked ipsilateral forelimb wipes. More importantly, rats subjected to intra-CeA infusion of Bic showed a significantly greater number of scratching bouts and time in acute and chronic pruritus animal models than control rats. Conversely, intra-CeA infusion of Mus in animal models dramatically decreased the number of scratching bouts and time compared with control rats. In addition, intra-CeA infusion of Bic or Mus at the current dose had no obvious effects on other behaviors including locomotor activity and spontaneous facial grooming in rats subjected to cheek microinjection of 5-hydroxytryptamine. Taken together, these results indicate that the GABA(A) receptor-mediated inhibitory system in the CeA is involved in itch modulation as well as is known in pain control.
Perspective: Itch, especially chronic itch, remains a challenge in clinic. Results of this study showed that the GABAA receptors in the CeA play an important role in itch modulation, which might help us to better understand the mechanisms of itch and subsequently develop novel mechanisms-based strategies to treat chronic itch in clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpain.2015.10.008 | DOI Listing |
IBRO Neurosci Rep
December 2024
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Previous investigations have revealed the role of GABAergic and serotonergic systems in the modulation of pain behavior. This research aimed to examine the effects of intracerebroventricular (i.c.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Eur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFConditioned suppression is a useful paradigm for measuring learned avoidance. In most conditioned suppression studies, forward conditioning is used where a cue predicts an aversive stimulus. However, backward conditioning, in which an aversive stimulus predicts a cue, provides unique insights into learned avoidance due to its influence on both conditioned excitation and inhibition.
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!