AI Article Synopsis

  • Scientists studied how lighter noble gases collide with ammonia molecules and lead to unique outcomes when they get energized.
  • They discovered important details about how long these interactions last and how certain parts of the molecules attract each other. Specifically, the nitrogen in ammonia plays a key role.
  • The researchers found that as they look at different noble gases, they behave similarly, which can help them learn more about other types of bonds between molecules, like halogen or hydrogen bonds.

Article Abstract

A combined analysis of both new (energy spectra of emitted electrons) and previously published (ionization cross sections) experimental data, measured under the same conditions and concerning electronically excited lighter noble gas -NH3 collisional autoionization processes, is carried out. Such an analysis, performed by exploiting a formulation of the full potential energy surface both in the real and imaginary parts, provides direct information on energetics, structure, and lifetime of the intermediate collision complex over all the configuration space. The marked anisotropy in the attraction of the real part, driving the approach of reagents, and the selective role of the imaginary component, associated to the charge transfer coupling between entrance and exit channels, suggests that reactive events occur almost exclusively in the molecular hemisphere containing the nitrogen lone pair. Crucial details on the stereo-dynamics of elementary collisional autoionization processes are then obtained, in which the open shell nature of the disclosed ionic core of metastable atom plays a crucial role. The same analysis also suggests that the strength of the attraction and the anisotropy of the interaction increases regularly along the series Ne*((3)P), He*((3)S), He*((1)S)-NH3. These findings can be ascribed to the strong rise of the metastable atom electronic polarizability (deformability) along the series. The obtained results can stimulate state of the art ab initio calculations focused on specific features of the transition state (energetics, structure, lifetime, etc.) which can be crucial for a further improvement of the adopted treatment and to better understand the nature of the leading interaction components which are the same responsible for the formation of the intermolecular halogen and hydrogen bond.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4933429DOI Listing

Publication Analysis

Top Keywords

collisional autoionization
12
autoionization processes
8
energetics structure
8
structure lifetime
8
metastable atom
8
stereo-dynamics collisional
4
autoionization ammonia
4
ammonia helium
4
helium neon
4
neon metastable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!