Cation exchange chromatography (CEX) is an integral part of many downstream processes for monoclonal antibodies (mAbs). However, in some cases CEX methods with standard mobile phase conditions do not lead to a sufficient removal of soluble antibody aggregates. The addition of neutral polymers such as polyethylene glycol (PEG) to the mobile phase can improve the separation of proteins in IEC remarkably. The applicability of this solvent modulation technique is limited by protein precipitation at higher PEG concentrations. To overcome this limitation solubility enhancers like polyols and amino acids can be added to the mobile phase. These additives are known to inhibit PEG-induced protein precipitation in solution. This new solvent modulation strategy was tested with three different mAbs on two different CEX resins in the presence of PEG in combination with various solubility enhancers. In order to assess the general applicability of this method, mAbs were selected that show major differences with respect to their sensitivity to PEG-induced precipitation and monomer/aggregate resolution performance that is achieved by CEX under standard conditions. For all three mAbs precipitation could be prevented without elimination of the positive PEG-effect. The addition of solubility enhancers gives access to improved separation at elevated PEG concentrations and high protein loadings without running into precipitation issues. Our data indicate that this method is generically applicable and leads to a superior antibody monomer/aggregate separation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2015.10.023DOI Listing

Publication Analysis

Top Keywords

solvent modulation
12
mobile phase
12
solubility enhancers
12
modulation strategy
8
superior antibody
8
antibody monomer/aggregate
8
monomer/aggregate separation
8
cation exchange
8
exchange chromatography
8
protein precipitation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!