D-Aspartate oxidase (DDO) catalyzes the oxidative deamination of acidic D-amino acids, whereas neutral and basic D-amino acids are substrates of D-amino acid oxidase (DAO). DDO of the yeast Cryptococcus humicola (ChDDO) has much higher substrate specificity to D-aspartate, but the structural features that confer this specificity have not been elucidated. A three-dimensional model of ChDDO suggested that a histidine residue (His56) in the active site might be involved in the unique substrate specificity, possibly through the interaction with the substrate side chain in the active site. His56 mutants with several different amino acid residues (H56A, H56D, H56F, H56K and H56N) exhibited no significant activity toward acidic D-amino acids, but H56A and H56N mutants gained the ability to utilize neutral D-amino acids as substrates, such as D-methionine, D-phenylalanine and D-glutamine, showing the conversion of ChDDO to DAO by these mutations. This conversion was also demonstrated by the sensitivity of these mutants to competitive inhibitors of DAO. These results and kinetic properties of the mutants show that His56 is involved in the substrate specificity of ChDDO and possibly plays a role in the higher substrate specificity toward D-aspartate.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvv108DOI Listing

Publication Analysis

Top Keywords

substrate specificity
20
d-amino acids
16
histidine residue
8
d-aspartate oxidase
8
acidic d-amino
8
acids substrates
8
higher substrate
8
specificity d-aspartate
8
active site
8
substrate
6

Similar Publications

Probing the properties of PTEN specific botulinum toxin type E mutants.

J Neural Transm (Vienna)

January 2025

Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.

Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.

View Article and Find Full Text PDF

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Polyphosphate kinases (PPK) play crucial roles in various biological processes, including energy storage and stress responses, through their interaction with inorganic polyphosphate (polyP) and the intracellular nucleotide pool. Members of the PPK family 2 (PPK2s) catalyse polyP‑consuming phosphorylation of nucleotides. In this study, we characterised two PPK2 enzymes from Bacillus cereus (BcPPK2) and Lysinibacillus fusiformis (LfPPK2) to investigate their substrate specificity and potential for selective nucleotide synthesis.

View Article and Find Full Text PDF

Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications.

J Cell Sci

January 2025

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.

Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!