NKT cells constitute a small population of T cells developed in the thymus that produce large amounts of cytokines and chemokines in response to lipid Ags. Signaling through the Vα14-Jα18 TCR instructs commitment to the NKT cell lineage, but the precise signaling mechanisms that instruct their lineage choice are unclear. In this article, we report that the cytoskeletal remodeling protein, p21-activated kinase 2 (Pak2), was essential for NKT cell development. Loss of Pak2 in T cells reduced stage III NKT cells in the thymus and periphery. Among different NKT cell subsets, Pak2 was necessary for the generation and function of NKT1 and NKT2 cells, but not NKT17 cells. Mechanistically, expression of Egr2 and promyelocytic leukemia zinc finger (PLZF), two key transcription factors for acquiring the NKT cell fate, were markedly diminished in the absence of Pak2. Diminished expression of Egr2 and PLZF were not caused by aberrant TCR signaling, as determined using a Nur77-GFP reporter, but were likely due to impaired induction and maintenance of signaling lymphocyte activation molecule 6 expression, a TCR costimulatory receptor required for NKT cell development. These data suggest that Pak2 controls thymic NKT cell development by providing a signal that links Egr2 to induce PLZF, in part by regulating signaling lymphocyte activation molecule 6 expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654230 | PMC |
http://dx.doi.org/10.4049/jimmunol.1501367 | DOI Listing |
Oncol Lett
March 2025
Gansu Province Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China.
The atypical expression of immune phenotypes in lymphoma is often associated with a poor prognosis and presents diagnostic challenges. The present study reports on a rare extranodal NK/T cell lymphoma. In addition to typical morphology and immunohistochemical characteristics, these tumors strongly express CD20 and CD30 and partially express CD15, which is associated with aggressive clinical behavior.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. Electronic address:
Recent studies have indicated that the GIMAP family is downregulated in lung cancer and correlates with poor prognosis, although the underlying mechanisms remain unclear. This study aimed to elucidate the mechanism behind GIMAP1 downregulation in lung cancer. Bioinformatics tools were employed to assess the correlation between the GIMAP family and various cancers.
View Article and Find Full Text PDFChin J Cancer Res
December 2024
Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China.
Gastric cancer (GC) ranks 3rd in incidence rate and mortality rate among malignant tumors in China, and the age-standardized five-year net survival rate of patients with GC was 35.9% from 2010 to 2014. The tumor immune microenvironment (TIME), which includes T cells, macrophages, natural killer (NK) cells and B cells, significantly affects tumor progression, immunosuppression and drug resistance in patients with GC.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.
Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!