Hydrophobic Interactions Are Key To Drive the Association of Tapasin with Peptide Transporter Subunit TAP2.

J Immunol

Institute of Immunology, Federal Research Institute of Animal Health, Friedrich Loeffler Institute, D-17493 Greifswald-Isle of Riems, Germany;

Published: December 2015

The transporter associated with Ag processing (TAP) translocates proteasomally derived cytosolic peptides into the endoplasmic reticulum. TAP is a central component of the peptide-loading complex (PLC), to which tapasin (TPN) recruits MHC class I (MHC I) and accessory chaperones. The PLC functions to facilitate and optimize MHC I-mediated Ag presentation. The heterodimeric peptide transporter consists of two homologous subunits, TAP1 and TAP2, each of which contains an N-terminal domain (N-domain) in addition to a conserved transmembrane (TM) core segment. Each N-domain binds to the TM region of a single TPN molecule, which recruits one MHC I molecule to TAP1 and/or TAP2. Although both N-domains act as TPN-docking sites, various studies suggest a functional asymmetry within the PLC resulting in greater significance of the TAP2/TPN interaction for MHC loading. In this study, we demonstrate that the leucine-rich hydrophobic sequence stretches (with the central leucine residues L20 and L66) in the first and second TM helix of TAP2 form a functional unit acting as a docking site for optimal TPN/MHC I recruitment, whereas three distinct highly conserved arginine and/or aspartate residues inside or flanking these TM helices are dispensable. Moreover, we show that the physical interaction between TAP2 and TPN is disrupted by benzene, a compound known to interfere with hydrophobic interactions, such as those between pairing leucine zippers. No such effects were observed for the TAP1/TAP2 interaction or the complex formation between TPN and MHC I. We propose that TAP/TPN complex formation is driven by hydrophobic interactions via leucine zipper-like motifs.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1500246DOI Listing

Publication Analysis

Top Keywords

hydrophobic interactions
12
peptide transporter
8
recruits mhc
8
complex formation
8
mhc
6
tap2
5
hydrophobic
4
interactions key
4
key drive
4
drive association
4

Similar Publications

Computationally designed 29-residue peptides yield tetra-α-helical bundles with symmetry. The "bundlemers" can be bifunctionally linked via thiol-maleimide cross-links at their N-termini, yielding supramolecular polymers with unusually large, micrometer-scale persistence lengths. To provide a molecularly resolved understanding of these systems, all-atom molecular modeling and simulations of linked bundlemers in explicit solvent are presented.

View Article and Find Full Text PDF

The aim of the study was to investigate the influence of the nitrocarburizing process carried out in low temperature plasma using the active screen at 440 °C on the structure and physicochemical properties of the 316LVM steel. In the paper, results of micro-structure and phase composition of the layers, roughness, and surface wettability, potentiodynamic pitting corrosion resistance, penetration of ions into the solution as well as biological tests were present. The studies were conducted for the samples of both mechanically polished and nitrocarburized surfaces, after sterilization, and exposure to the Ringer's solution.

View Article and Find Full Text PDF

The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.

View Article and Find Full Text PDF

Small molecules targeting activating mutations within the epidermal growth factor receptor (EGFR) are efficacious anticancer agents, particularly in non-small cell lung cancer (NSCLC). Among these, lazertinib, a third-generation tyrosine kinase inhibitor (TKI), has recently gained FDA approval for use in combination with amivantamab, a dual EGFR/MET-targeting monoclonal antibody. This review delves into the discovery and development of lazertinib underscoring the improvements in medicinal chemistry properties, especially in comparison with osimertinib.

View Article and Find Full Text PDF

Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!