Physiological plasticity and adaptive evolution may facilitate persistence in a changing environment. As a result, there is an interest in understanding species' capacities for plastic and evolved responses, and the mechanisms by which these responses occur. Transcriptome sequencing has become a powerful tool for addressing these questions, providing insight into otherwise unobserved effects of changing conditions on organismal physiology and variation in these effects among individuals and populations. Here, we review recent studies using comparative transcriptomics to understand plastic and evolutionary responses to changing environments. We focus on 2 areas where transcriptomics has played an important role: first, in understanding the genetic basis for local adaptation to current gradients as a proxy for future adaptation, and second, in understanding organismal responses to multiple stressors. We find most studies examining multiple stressors have tested the effects of each stressor individually; the few studies testing multiple stressors simultaneously have found synergistic effects on gene expression that would not have been predicted from single stressor studies. We discuss the importance of robust experimental design to allow for a more sophisticated characterization of transcriptomic responses and conclude by offering recommendations for future research, including integrating genomics with transcriptomics, testing gene regulatory networks, and comparing the equivalence of transcription to translation and the effects of environmental stress on the proteome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esv073 | DOI Listing |
Environ Res
January 2025
Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.
View Article and Find Full Text PDFSci Adv
January 2025
Québec Océan, Département de biologie, Université Laval, Québec, Canada.
Biodiversity encompasses not only species diversity but also the complex interactions that drive ecological dynamics and ecosystem functioning. Still, these critical interactions remain overwhelmingly overlooked in environmental management. In this study, we introduce an ecosystem-based approach that assesses the cumulative effects of climate change and human activities on species in the St.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.
View Article and Find Full Text PDFJ Pers Med
December 2024
Divisione di Cardiologia, Policlinico Casilino, Via Casilina, 00169 Roma, Italy.
: Takotsubo syndrome (TTS) shares many clinical features with acute myocardial infarction (AMI); however, its underlying pathophysiology remains elusive due to specific characteristics (i.e., reversibility, presence of stressors, and low mortality rate).
View Article and Find Full Text PDFBehav Sci (Basel)
December 2024
Public Health & Anthropology, Syracuse University, Syracuse, NY 13244, USA.
This article focuses on the impact of trauma experienced by individuals, families and groups, and neighborhoods in Rochester and Syracuse, New York. Using the levels of analysis put forward in Bronfenbrenner's ecological systems theory (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!